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Abstract

Part of the workshop is a challenge on combining 3D

and semantic information in complex scenes. To this end,

a challenging outdoor dataset, captured by a robot driving

through a semantically-rich garden that contains fine geo-

metric details, was released. A multi-camera rig is mounted

on top of the robot, enabling the use of both stereo and mo-

tion stereo information. Precise ground truth for the 3D

structure of the garden has been obtained with a laser scan-

ner and accurate pose estimates for the robot are available

as well. Ground truth semantic labels and ground truth

depth from a laser scan are used for benchmarking the qual-

ity of the 3D reconstructions.

1. Description

Given a set of images and their known camera poses, the
goal of the challenge is to create a semantically annotated
3D model of the scene. To this end, it will be necessary
to compute depth maps for the images and then fuse them
together (potentially while incorporating information from
the semantics) into a single 3D model.

We have provided the following data for the challenge1:

• A set of training sequences consisting of

– calibrated images with their camera poses,

– ground truth semantic annotations for a subset of
these images,

– a semantically annotated 3D point cloud depict-
ing the area of the training sequence.

• A testing sequence consisting of calibrated images
with their camera poses.

Both training and testing data are available from
the git repository https://gitlab.inf.ed.ac.uk/
3DRMS/Challenge2017, where also details on the file
formats can be found.
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Figure 1. Point cloud of the entire garden (height-colored).

2. Garden Dataset

The dataset for the the 3DRMS challenge was collected
in a test garden at Wageningen University Research Cam-
pus, Netherlands, which was built specifically for experi-
mentation in robotic gardening.

Four scenarios of robot driving around different parts of
the garden (Fig. 2) were used: around_hedge (17),

boxwood_row (57), boxwood_slope (23) and
around_garden (124). The first three were desig-
nated entirely for training, the last one was split between
testing and training (around_garden_roses (11)).
The numbers in brackets indicate the sequence length in
frames.

2.1. Calibrated Images

Image streams from four cameras (0,1,2,3) were pro-
vided. Fig. 3 shows these are mounted in a pairwise setup,
the pair 0-1 is oriented to the front and the pair 2-3 to the
right side of the robot vehicle. Resolution of the images is
752x480 (WVGA), cameras 0 and 2 are color while cam-
eras 1 and 3 are greyscale (but sharper). All images were
undistorted with the intrinsic camera parameters2.

The camera poses were estimated with COLMAP [3]
and manually aligned to the coordinate system of the laser
point cloud.

2Calibration was performed with Kalibr toolbox, https://

github.com/ethz-asl/kalibr.
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Figure 2. Trajectories of the captured scenarios, training (yellow)
and test (purple) sequences.

2.2. Semantic Image Annotations

The set of classes we distinguish in the images contains 9
labels (color code in brackets):

• Grass (light green)

• Ground (brown)

• Pavement (grey)

• Hedge (ochre)

• Topiary (cyan)

• Rose (red)

• Obstacle (blue)

• Tree (dark green)

• Background (black)

Manual pixel-wise annotations (Fig. 4) are provided for
frames in cameras 0 and 2.

2.3. Semantic Point Cloud

The geometry of the scene was acquired by Leica

ScanStation P15, accuracy of 3 mm at 40 m. Its native
output merged from 20 individual scans (Fig. 1) was sub-
sampled with a spatial filter to achieve a minimal distance
between two points of 10 mm, which becomes the effective
accuracy of the GT. For some dynamic parts, like leaves and
branches, the accuracy can be further reduced due to move-
ment by the wind, etc.

Semantic labels were assigned to the points with mul-
tiple 3D bounding boxes drawn around individual compo-
nents of the point cloud belonging to the garden objects or

terrain. Ultimately the point cloud was split into segments
corresponding to train and test sequences as shown in Fig. 5.

3. Evaluation
We have evaluated the quality of the 3D meshes based

on the completeness of the reconstruction, i.e., how much of
the ground truth is covered, the accuracy of the reconstruc-
tion, i.e., how accurately the 3D mesh models the scene,
and the semantic quality of the mesh, i.e., how close the
semantics of the mesh are to the ground truth.

3.1. Compared Methods

In addition to the two submitted results we have also
compared to current state-of-the-art methods in both recon-
struction [3] and classification [1] tasks.

SnapNet-R (Moras) [2] A variant of the SnapNet deep
net, with better semantic segmentation of 2D & 3D data.
New views are synthesized from the 3D point cloud, which
can be used by 2D semantic labeling and segmentation, thus
boosting performance from the fusion of the resulting mul-
tiple labels. The fact that pixels are semantically labeled is
used to constrain false correspondences when constructing
3D point clouds.

Taguchi [6] Semantic 3D reconstruction using depth and
label fusion.

COLMAP [3] (3D Reconstruction baseline) A general-
purpose Structure-from-Motion (SfM) and Multi-View
Stereo (MVS) pipeline with a graphical and command-line
interface. It offers a wide range of features for reconstruc-
tion of ordered and unordered image collections.

SegNet [1] (Semantic baseline) For comparison with the
2D state-of-the-art a SegNet architecture [1] is adapted for
the given garden semantics. The network was trained on
20k synthetic garden images and then fine-tuned with the
challenge training set.

3.2. 3D Geometry Reconstruction: Accuracy &
Completeness

We have followed the usual evaluation methodology de-
scribed in [5]. In particular, accuracy is distance d (in m)
such that 90% of the reconstruction is within d of the ground
truth mesh and completeness is the percent of points in the
GT point cloud that are within 5 cm of the reconstruction.

The distances between the reconstruction and GT are cal-
culated using a point-to-mesh metric for completeness and
vertex-to-point for accuracy. The faces of submitted meshes
were subdivided to have a same maximum edge length. The
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difference between the evaluated results are shown in Fig-
ures 6,7,8, which all use the same color scale for accuracy
or completeness. Cold colors indicate well reconstructed
segments while hot colors indicate hallucinated surface (ac-
curacy) or missing parts (completeness).

The evaluation was limited to the space delimited in XY
by the perimeter of the test area and in Z to 1 m high sec-
tion above the ground, ie. the tree-tops were excluded. Fol-
lowing [4] we also plot cumulative histograms of distances
in Fig. 9.

3.3. Semantic Classification: Quality

The accuracy of semantic labels assigned to vertices or
faces of the 3D model (Fig. 14) was evaluated by its pro-
jection to all test images with known poses. Only the pixels
corresponding to the 3D test part (as specified in the pre-
vious section) were considered. The rest of the image was
masked out and ignored, as in Fig. 10.

Visual comparison of the results in a selected frame is
given in Figures 11,12,13. In the error mask the red pix-
els indicate incorrectly classified pixels, grey were correct
and black were not evaluated. Quantitative results are pre-
sented by confusion matrices for all images in the test set in
Fig. 15, where semantic accuracy is the percentage of cor-
rectly predicted pixels across all test images.

3.4. Results

The quantitative comparison in all three performance
categories is given in the following table:

Method Accuracy Completeness Semantic

Taguchi [6] 0.101 m 71.1 % 82.2 %
SnapNet-R [2] 0.198 m 83.3 % 69.3 %

Colmap [3] 0.022 m 85.3 %

SegNet [1] 82.2 %

Table 1. Comparison of submitted results (top rows) with baselines
(bottom). Semantic quality is the ratio of correctly predicted pixels
in the test part of images.

The baseline Structure-from-Motion method [3] outper-
formed the challenge participants by a large margin in ac-
curacy while obtaining similar completeness of SnapNet-
R [2]. The SnapNet-R method of Moras et al. achieves that
completeness level only at the cost of significantly lower
accuracy, corresponding to the large amount of hallucinated
surfaces visible in the reconstruction result.

Compared to that the method of Taguchi and Feng [6]
appears to be rather conservative, with less complete but
semantically more consistent mesh, as observed in Fig. 14,
resulting in the same performance the as deep convolutional
network [1].

4. Conclusion
In summary the workshop challenge competitors did not

fully leverage the joint semantic & 3D information, as both
independent 2D and 3D baseline methods we compared
with performed the same or better in quantitative terms.
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Figure 3. Pentagonal camera rig mounted on the robot (left). First four cameras were included in the challenge data (right, green).

Figure 4. Undistorted image from camera 0 (left) and its semantic annotation (right).

Figure 5. Semantic point cloud of the entire garden with color-coded object classes. Left: 4 training parts. Right: test part.
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Figure 6. Accuracy (left) and completeness (right) of Taguchi’s reconstruction.

Figure 7. Accuracy (left) and completeness (right) of SnapNet-R reconstruction.

Figure 8. Accuracy (left) and completeness (right) of COLMAP reconstruction.
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Figure 9. Accuracy and completeness of evaluated 3D reconstructions.
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Figure 10. Masked GT annotation (left) of a sample test frame (right).

Figure 11. Projection of Taguchi’s reconstruction (left) and its error mask (right).

Figure 12. Projection of SnapNet-R reconstruction (left) and its error mask (right).

Figure 13. SegNet classification (left) and its error mask (right).
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Figure 14. Semantic mesh of Taguchi (left) and SnapNet-R (right).
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Figure 15. Confusion matrices for submissions of Taguchi (left) and SnapNet-R (right).
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Figure 16. Confusion matrix for SegNet (left) and the 1m high test section of GT model (right).
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