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1 Introduction
This report consists of two parts. The first one (Section 2) details the data structures used to
represent the results of fusing the 3D sensor data, including a description of its implementation.
The second part of this report (Section 3) describes the calibration of the multi-camera system
mounted on the chassis of the robot used in the Trimbot2020 project.

2 Data Structures for 3D Data Fusion
This section describes the data structures used for representing the fused 3D shape data, hypoth-
esized objects, and garden structures. As the individual components are developed by different
partners and since these individual components need to interact with each other, it was decided
that each partner implements their component as a ROS (Robot Operating System) package.
These packages communicate with each other by sending messages that contain the data they
provide. As such, the data structures used to represent the different objects are implemented
as messages in ROS. In the following, we give a brief overview of the components relevant
for this deliverable and then discuss the individual ROS messages defined for this project.
When possible, we utilize the standard messages pre-defined in ROS and augment them with
additional customary messages.

2.1 Relevant Packages
The Camera package (developed by ETH Zurich) provides camera images together with the
intrinsic calibration of the cameras. A FPGA is used to synchronize data capture for the 10
cameras mounted on the Trimbot platform (cf. Section 3). In addition, the FPGA also computes
depth maps for the 5 stereo pairs that make up the multi-camera system.

The (semantic) SLAM package (developed by ETH Zurich) is responsible for simultaneously
estimating a 3D map of the garden (in the form of a sparse point cloud) and the position of the
robot with respect of this map. To this end, the images and calibration data provided by the
Camera package are used. In addition, the package is responsible for localizing the robot with
respect to a pre-built 3D map from a previous run. Besides publishing messages that describe the
current poses of the multi-camera and vehicle frames as well as an odometry message, the SLAM
package also provides the sparse point cloud, detected obstacles, and a grid for static obstacles.
In addition, the SLAM package has a semantic component that uses semantic image information
to support the SLAM system, e.g., by exploiting semantics to reduce drift, to semantically
annotate the sparse point cloud, or to detect obstacles based on their semantics.

The 3D Data Processing package (developed by the University of Edinburgh and the
Albert-Ludwigs-Universität Freiburg) is responsible for processing the 3D sensor data gener-
ated in the project. It uses the camera images, calibrations, and depth maps from the Camera
package and the sparse point cloud from the SLAM package as input and consists of multiple
sub-components: The projection component generates a dense point cloud, including co-
variance estimates for the points. The scene flow component computes the scene flow from
the camera images. The dense point cloud and the flow are then merged with the sparse SLAM
point cloud in the fusion component, which generates a volumetric representation of the
scene. The surface extraction component then extracts a 3D mesh from this volume.
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Both the volumetric and mesh representations are published to other packages.
As part of its responsibilities, the Garden Object Detection package (developed by

the University of Amsterdam) performs semantic segmentation and garden object detection,
where the garden objects can consist of multiple prototypical objects (proto objects). These
initial 2D detections are enriched by the 3D data computed in the other packages, e.g., a garden
object can be associated with a 3D mesh.

2.2 Custom ROS Messages
In the following, we discuss the custom ROS messages defined for the Trimbot project and
provide their definitions. The messages are ordered by package.

2.2.1 Camera Package Messages

The depth maps generated on the FPGA are stored and sent as disparity images, using the
DisparityImage.msg message pre-defined in ROS (http://docs.ros.org/api/
stereo_msgs/html/msg/DisparityImage.html).

2.2.2 SLAM Package Messages

Trimbot’s SLAM system generates a sparse point cloud of the scene that is simultaneously used
to represent the scene geometry and to estimate the pose of the robot in the scene. The point
cloud is represented using the PointCloud2.msg message pre-defined in ROS (http://
docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html). As the point
cloud is generated by triangulating local image features during SLAM, each 3D point is also
associated with two or more image features. The features extracted from an image are defined
in the customary Feature.msg message shown below. The message contains the id (type)
of features, the id of the image, the number of features found in this frame, the region of
interest around each feature (defined by a 2D position, a scale, and an orientation), and the
D-dimensional local descriptors associated with the features.

# F e a t u r e . msg
u i n t 3 2 i d # f e a t u r e s e t i d
u i n t 3 2 f rame # frame i d
u i n t 3 2 c o u n t # number o f 2D p o i n t s
f l o a t 3 2 [ ] pos # xy p o s i t i o n [ c o u n t 2 ]
f l o a t 3 2 [ ] s c a l e # r o i r a d i u s [ c o u n t ]
f l o a t 3 2 [ ] o r i e n t # r o i o r i e n t a t i o n [ c o u n t ]
f l o a t 3 2 [ ] de sc # d e s c r i p t o r s [ c o u n t D]

In order to preserve the association between 3D points and features and enable adding proto ob-
jects (used by the semantic component of the SLAM system), the standard PointCloud2.msg
is accompanied by a customary SparseCloud.msg message defined as

# Spa r seC loud . msg
u i n t 3 2 seq # h e a d e r . seq o f t h e P o i n t C l o u d 2 msg
u i n t 3 2 i d # c l o u d i d
u i n t 3 2 [ ] p r o t o # l i n k e d s e m a n t i c p r o t o i d s
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F e a t u r e L i s t [ ] f l i s t # l i n k e d image f e a t u r e i d [ c o u n t ]

The SparseCloud.msg message refers to the corresponding standard point cloud and con-
tains a list of proto objects (see Section 2.2.4 for details) and a list of features associated with
the 3D points (flist). The latter list is represented by storing the number of linked features
and a list of (image feature id, feature id) pairs per point, where the former number specifies the
frame id of a Features.msg message and the latter defines an index into the set of features
of this frame.

Besides the sparse 3D point cloud generated as part of the SLAM system, the SLAM pack-
age also provides an occupancy grid containing static obstacles. This is implemented using
the pre-defined OccupancyGrid.msg message (http://docs.ros.org/kinetic/
api/nav_msgs/html/msg/OccupancyGrid.html). In addition, the package can pro-
vide messages for individual object detections, where each obstacle (given with respect to the
current pose of the robot frame) is represented by a PointCloud2.msg.

2.2.3 3D Data Processing Package Messages

The projection component takes the dense depth maps generated by the camera or the
scene flow component and creates a dense 3D point cloud. This point cloud is again
represented by a PointCloud2.msg. In order to enrich this representation, a customary
DenseCloud.msg message is defined as

# DenseCloud . msg
u i n t 3 2 seq # h e a d e r . seq o f t h e P o i n t C l o u d 2 msg
u i n t 3 2 i d # u n i qu e c l o u d i d
u i n t 3 2 s o u r c e # 1= d e p t h map , 2= s c e n e f low
u i n t 3 2 from # map or f low i d
s t r i n g cov f # c o v a r i a n c e f u n c t i o n spec
f l o a t 3 2 [C] covp # c o v a r i a n c e f u n c t i o n params

The message stores the type of data source used to create the point cloud and the id of the
corresponding raw data (from) together with covariance estimations for the 3D points. In
order to remain flexible, the message defines the covariance function in the covf field.

The individual depth maps generated by the projection component are then fused into
a single volumetric representation by the fusion component. Each voxel is represented by a
3D position, a normal, a RGB color, the probability of being occupied, and a signed distance
value that gives an estimate for the distance to the closest surface. In addition, each voxel stores
covariance matrix estimates for the position, normal, and color. The volumetric grid is then
represented by a list of voxels, where each voxel can have a separate size (scale). This allows the
use of hierarchical data structures such as octrees that take the scale of individual measurements
into account during fusion. The resulting Volume.msg message is shown below. Notice that
the volumetric fusion can also be linked to a set of proto objects, stored through their ids.

# Volume . msg
u i n t 3 2 i d # volume i d
u i n t 3 2 c o u n t # number o f v o x e l s
f l o a t 3 2 [ ] s c a l e # v o x e l s i z e [ c o u n t ]
P o i n t 3 2 [ ] pos # xyz p o s i t i o n [ c o u n t ]

Version 1.0; 2017–07–11 Page 4 of 16 c� TrimBot2020 Consortium, 2010

http://docs.ros.org/kinetic/api/nav_msgs/html/msg/OccupancyGrid.html
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/OccupancyGrid.html


IST – 688007, – TrimBot2020 Deliverable D3.1

f l o a t 3 2 [ ] pcov # pos c o v a r i a n c e [ c o u n t 3 3 ]
Vec to r3 [ ] norm # u n i t normal [ c o u n t ]
f l o a t 3 2 [ ] ncov # norm c o v a r i a n c e [ c o u n t 3 3 ]
Vec to r3 [ ] c o l o r # rgb c o l o r [ c o u n t ]
f l o a t 3 2 [ ] ccov # c o l o r c o v a r i a n c e [ c o u n t 3 3 ]
f l o a t 3 2 [ ] occ # occupancy p r o b a b i l i t y [ c o u n t ]
f l o a t 3 2 [ ] d i s t # s i g n e d d i s t . t o s u r f a c e a l o n g normal [ c o u n t ]
u i n t 3 2 [ ] p r o t o # l i n k e d s e m a n t i c p r o t o i d s [ c o u n t ]

Given the volumetric representation defined above, the surface extraction compo-
nent generates a 3D surface mesh, for example through applying a variant of the Marching
Cubes algorithm. This triangle mesh is represented using the pre-defined Mesh.msg message
provided by ROS (http://docs.ros.org/kinetic/api/shape_msgs/html/msg/
Mesh.html). In order to include additional measurements such as an estimate of the covari-
ance at each vertex of the mesh, triangle colors, or semantic labels, the custom MeshEx.msg
shown below is used, where V is the number of mesh vertices and T is the number of mesh
triangles.

# MeshEx . msg
u i n t 3 2 i d # mesh i d
f l o a t 3 2 [ ] vcov # v e r t e x p o s i t i o n c o v a r i a n c e [V 3 3]
Vec to r3 [ ] t c o l o r # rgb f a c e c o l o r s [ T ]
u i n t 3 2 [ ] t l a b e l # o p t i o n a l f a c e l a b e l [ T ]
u i n t 3 2 [ ] t s h a p e # o p t i o n a l f a c e shape [ T ]

2.2.4 Garden Object Detection Package Messages

The Garden Object Detection package provides 2D image detections of objects. These
detections are represented through a semantic image segmentation that consists of a set of
segments. Each segment is defined as a set of pixels with an associated semantic label and
a shape type. The resulting Segments.msg message is defined as

# Segments . msg
u i n t 3 2 i d # s e g m e n t a t i o n i d
u i n t 3 2 f rame # image f rame i d
u i n t 3 2 c o u n t # number o f segment s
u i n t 3 2 [ ] seg # p i x e l w i s e segment map [ h w]
u i n t 3 2 [ ] l a b e l # l a b e l s f o r segmen t s [ c o u n t ]
u i n t 3 2 [ ] shape # shape t y p e s f o r segmen t s [ c o u n t ]

Using the 3D information generated by the other packages, 2D image detections (potentially
from multiple images) can be upgraded to so-called proto objects. These objects reference their
object type (in the form of a semantic label) and shape type, as well as lists of corresponding 2D
segments and 3D surface meshes. In addition, each proto object has a 3D position and orienta-
tion and defines a bounding box for the object. In addition, the resulting ProtoObject.msg
message also contains a volumetric representation for the object:

# P r o t o O b j e c t . msg
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u i n t 3 2 i d # p r o t o i d
u i n t 3 2 l a b e l # o b j e c t t y p e
u i n t 3 2 shape # shape t y p e
u i n t 3 2 [ ] seg # image segment i d s ( 1 ) and i d x ( 2 ) [N 2]
u i n t 3 2 [ ] mesh # s u r f a c e mesh i d s ( 1 ) and f a c e i d x ( 2 ) [M 2]
P o i n t 3 2 pos # xyz p o s i t i o n
Vec to r3 o r i e n t # o r i e n t a t i o n v e c t o r
Vec to r3 box # bounding box s i z e
u i n t 3 2 [ 3 ] dim # g r i d d i m e n s i o n s [H,W,D]
boo l [ ] occup # occupancy g r i d [H W D]

The proto objects can be used to construct more complex garden objects, which consist
of multiple proto objects (and potentially a detailed geometric representation in the form of a
triangle mesh). In addition, the GardenObject.msg message also contains the position and
orientation of the object, as well as a bounding box and a volumetric representation:

# GardenObjec t . msg
u i n t 3 2 i d # ga rd en o b j e c t i d
u i n t 3 2 map # map o b j e c t i d
u i n t 3 2 [ ] p r o t o # p r o t o o b j e c t i d s
P o i n t 3 2 pos # xyz g l o b a l p o s i t i o n
Vec to r3 o r i e n t # o r i e n t a t i o n v e c t o r
Vec to r3 box # bounding box s i z e
u i n t 3 2 [ 3 ] dim # g r i d d i m e n s i o n s [H,W,D]
boo l [ ] occup # occupancy g r i d [H W D]
Mesh geomet ry # o p t i o n a l d e t a i l e d geomet ry

3 Sensor Calibration
There are 10 cameras mounted on the Trimbot platform. Each camera features an image sensor
and an inertial measurement unit (IMU). The cameras are arranged in pairs for stereo vision, the
left camera is a color camera, the right is greyscale camera. However the color and greyscale
cameras are fully compatible and can easily be replaced to support a uniform 10 color camera or
10 greyscale camera setup. The color cameras are slightly less light sensitive than the greyscale
cameras and have less spatial resolution due to the bayer filter. The current setup with mixed
pairs allows to take advantage of capturing color and full spatial resolution images. The five
pairs are mounted in a pentagon shape and create together a 360 degree field of view.
A camera calibration contains the camera intrinsic parameters, which are lens and image sensor
specific values as well as extrinsic parameters, that describe the position and orientation of
a camera. The intrinsic camera parameters are similar among all cameras as all of them
are equipped with the same lens but due to small production inaccuracies, slightly different
positions of the image sensor relative to the lens and other mechanical reasons, the intrinsic
values are not the same. A calibration routine therefore needs to estimate intrinsic parameters
for all cameras individually. Figure 1 shows the camera configuration with five stereo pairs in a
pentagon shape.
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(a) (b)

Figure 1: Top view in (a) and side view in (b) of the 10 camera setup. The cameras are mounted
on an aluminium profile to maintain a rigid camera setup. The 10 cameras are forming 5 stereo
pairs that are arranged in a pentagon setup. The baseline between the left and right camera of a
stereo pair is 30mm.

The cameras are hardware synchronized and provide images at up to 12 frames per second
each. Figure 2 shows all 10 images of the pentagon setup in a garden scene. The top row
corresponds to the images of the 5 left color cameras. The bottom row corresponds to the
images of the 5 right greyscale cameras. There is an overlap in the field of view of neighbouring
cameras as the field of view is 82 degrees for the individual cameras while the pentagon shape
has only 72 degrees corners.

3.1 Calibration Parameters
A lens model that takes into account radial and tangential distortion parameters as described in
[1] is used to model the lens distortion effects. The complete set of intrinsic parameters is given
in Table 1.
The camera intrinsic parameters focal length [f

cx

, f
cy

] and principal point [c
cx

, c
cy

] are measured
in pixels. The radial distortion parameters [1,2] and tangential distortion parameters [⇠1, ⇠2]
are dimensionless values.
The extrinsic parameters include a three dimensional translation vector t in meters and a three
dimensional rotation matrix R in right-handed coordinates1.
Figure 3a shows an example raw image of a window, especially in the corners the image is
affected by distortion effects of the lens. In Figure 3b the image is corrected based on the radial

1All coordinate systems used in this report are right-handed.

Version 1.0; 2017–07–11 Page 7 of 16 c� TrimBot2020 Consortium, 2010



IST – 688007, – TrimBot2020 Deliverable D3.1

Figure 2: Panoramic view composed of the five individual stereo camera views from the
pentagon setup. Top row shows the five left color images, bottom row the five right greyscale
images. There is an overlap in the field of view between neighbouring cameras. All images are
subject to lens distortion effects.

(a) (b)

Figure 3: (a) Raw image of a single camera from the pentagon setup. The distortion effects of
the lens are visible as the window frame is curved. (b) The corrected image with respect to the
lens distortion based on the obtained intrinsic and extrinsic camera parameters.

tangential lens model.

3.2 Offline Calibration via Kalibr
Kalibr is a toolbox that can estimate intrinsic and extrinsic calibration parameters of a multi-
camera system with non-globally shared overlapping fields of view. The toolbox is available
under BSD license, implementation details are available in the corresponding publications [2,
3, 4]. Three different calibration targets are supported, a checkerboard target, a circle grid
target, and an Aprilgrid target. The Aprilgrid target is recommented as it allows to use also
partially visible targets for calibration and the pose of the target is fully resolved, eliminating
any problems with flips. An example of an Aprilgrid target is shown in Figure 4. There are 36
AprilTags arranged in a 6x6 2D array.

To obtain calibration images, the camera system is fixed and the calibration target is moved
in front of the cameras. Figure 5 shows the Trimbot prototype with the pentagon camera setup
in front of the calibration target that is carried around the prototype. A ROS bag containing the
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Name Symbol Unit

Focal Length f
cx

[pixel]
f
cy

[pixel]

Principal Point c
cx

[pixel]
c
cy

[pixel]

Radial Distortion 1 [1]
2 [1]

Tangential Distortion ⇠1 [1]
⇠2 [1]

Table 1: Intrinsic parameters for the pinhole camera model with radial tangential distortion.
Focal length and principal points are measured in pixels, the distortion parameters are
dimensionless values.

Figure 4: Calibration target pattern. A 2D array of 36 AprilTags forms the 6x6 calibration
target.

images is the preferred input for the Kalibr toolbox. Kalibr first detects and extracts the position
of the calibration targets in the images and uses the extracted positions to estimate the intrinsic
calibration values. In a second step, the position of the calibration target is used to estimate the
extrinsic parameters among views with overlapping field of view.

The calibration values are written to a .yaml file including the camera model, intrisic and
extrinsic parameters, distortion model, distortion coefficients, resolution and the ROS topic
name the calibration was created out of. Listing 1 shows the structure of an example .yaml
calibration file for a simplified setup of only two cameras. For validation there is a PDF report
available containing plots with reprojection errors for all the camera views.
cam0 :

c a m o v e r l a p s : [ 1 , 2 , 3 , 8 , 9 ]
camera model : p i n h o l e
d i s t o r t i o n c o e f f s : [ �0.35995268092519617 , 0 .11030211900967231 , �0.0006317626993103383 ,

�0.0010628642396034863]
d i s t o r t i o n m o d e l : r a d t a n
i n t r i n s i c s : [538 .3498428066779 , 538 .5608816406484 , 388 .69387892103344 , 225 .98034433739815]
r e s o l u t i o n : [ 7 5 2 , 480]
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Figure 5: Calibration bag recording. The calibration board is moved in front of the cameras to
obtain calibration images.

r o s t o p i c : / uvc camera / cam 0 / image raw
cam1 :

T cn cnm1 :
� [0 .9999646166488014 , �0.0027179038177023314 , �0.007961058298851202 , �0.03170587862687098]
� [0 .0027635673748502222 , 0 .9999797618755782 , 0 .005730491655251141 , �0.0004948946690760341]
� [0 .007945322256815766 , �0.005752289812236394 , 0 .9999518903507988 , �0.0005098018039522468]
� [ 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ]
c a m o v e r l a p s : [ 0 , 2 , 3 , 8 , 9 ]
camera model : p i n h o l e
d i s t o r t i o n c o e f f s : [ �0.35609294506885897 , 0 .10647325852719773 , �0.0010914026444042012 ,

�0.0010556456670249045]
d i s t o r t i o n m o d e l : r a d t a n
i n t r i n s i c s : [541 .6460202751782 , 541 .9113267065561 , 362 .16127043794364 , 231 .3916809318506]
r e s o l u t i o n : [ 7 5 2 , 480]
r o s t o p i c : / uvc camera / cam 1 / image raw

Listing 1: Calibration values in .yaml file format

Additional to the camera calibration tool, Kalibr also provides a calibration tool to get the
spatial and temporal parameters between camera and IMU. To obtain camera-IMU calibration
images and calibration values, the calibration pattern is fixed and the camera-IMU system is
moved in front of the Aprilgrid target to excite all IMU axes. Good illumination to keep the
shutter times low to avoid motion blur is crucial. Details about the camera-IMU calibration
method are desribed in [2].

3.3 Online Calibration
The offline calibration of the intrinsics and extrinsics of our camera array (see Figure 1) is highly
accurate but requires a specialized calibration pattern. As such, this step would be carried out
once before deploying the robot for operation. However, even though the camera array is rigidly
mounted, external forces, such as vibrations, temperature changes, etc., can significantly alter
the intrinsic and extrinsic parameters of the setup. Since the entire operational functionality of
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the robot relies on an accurate localization within the map, which itself relies on an accurate
calibration, it is therefore essential to maintain an accurate calibration of the camera parameters
during operation.
In addition, we strive to avoid the tedious offline calibration process before each deployment of
the robot. Therefore, we developed a system that continuously refines and updates its camera
calibration parameters to account for small variations during operation [5]. Furthermore, our
system can self-calibrate the camera array extrinsics from scratch in order to account for bigger
variations. As an ongoing effort, we are currently also extending our system to support self-
calibration of the intrinsic parameters, thereby superseding the need for offline calibration
entirely. In the following, we first describe the technical details of the online calibration system
and then evaluate our approach using real-world datasets.

3.3.1 Calibration Problem

Given the intrinsic and extrinsic parameters p
Cl

of camera C
l

from the offline calibration, the
goal is to continuously refine these parameters during operation to account for small variations
caused by external physical forces. While the robot is in operation, our system continuously
estimates its location t

Ii and orientation R

Ii for every camera frame I
i

and builds a local map
of its environment using the sparse points X

k

. This problem is called Simultaneous Localization
and Mapping (SLAM) [6] and, in order to give context for calibration, we formulate this
problem as a joint optimization problem minimizing the reprojection error

e =
X

i,j

⇢
✓���xIi

j

� ⇡ (P (X
k

,R
Ii , tIi),pCl

)
���
2
◆

, (1)

which is typically called the bundle adjustment problem [7]. Here, we sum over all image ob-
servations j in all camera frames i, while ⇢ denotes a loss function (e.g., the L2 loss or the robust
Huber loss), xIi

j

denotes an image observation of a 3D point X
k

, and ⇡ defines the projection
function from world to camera coordinates given the intrinsic and extrinsic calibration p

Cl
of

the camera array as well as its location t

Ii and orientation R

Ii in the world. The typical SLAM
problem optimizes this objective function over the location and map parameters {X

k

,R
Ii , tIi}

and keeps the calibration parameters p
Cl

constant, as initialized by an offline calibration routine.

3.3.2 Continuous Refinement

In order to continuously refine the calibration parameters, we therefore also optimize over the
intrinsic and extrinsic calibration parameters p

Cl
in SLAM. We optimize the objective function

using the Levenberg-Marquardt algorithm and use preconditioned conjugate gradients as an
iterative method to solve the system of equations. To ensure a well-conditioned system for
calibration, we only optimize over the calibration parameters if we detect a reliable geometric
configuration with enough constraints. A reliable configuration is typically achieved when
every camera has common observations from sufficiently different viewpoints with many other
cameras in the array, leading to a relatively dense system of equations. For this configuration,
the robot must both rotate and change its position. The optimization approach requires a
good initialization in order to converge and we use standard two-view Structure-from-Motion
techniques to obtain initial estimates for {X

k

,R
Ii , tIi}. To initialize the intrinsic and extrinsic

calibration parameters p
Cl

, we use the values obtained from the offline calibration, as described
in the previous section.
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3.3.3 Extrinsic Self-Calibration

This section describes how we can self-calibrate the extrinsic parameters from scratch with-
out any prior information. While the continuous calibration refinement operates online, it
requires good initialization which is either tedious due to the offline calibration routine or is
not accurate enough due to larger changes to the camera array configuration caused by external
physical forces. In this section, we describe a system to self-calibrate the extrinsic parameters
from scratch to overcome these limitations. Our method requires the robot to move for a
short distance in order to obtain enough constraints for self-calibration before initializing the
SLAM pipeline. In contrast to the calibration refinement in SLAM, which uses an incremental
Structure-from-Motion approach, we parameterize a global Structure-from-Motion approach to
incorporate the rigid extrinsic configuration of the camera array.
In global Structure-from-Motion, one first estimates the relative transformations {R

Iij , tIij}
between image I

i

and image I
j

. These pairwise transformations are estimated using projective
geometry and define a viewing graph (see Figure 6) with images as vertices and transformations
as edges. We estimate a homography for pure camera rotation or unconstrained motion in
planar scenes and an essential matrix for unconstrained motion in non-planar scenes. Global
Structure-from-Motion then aims to assign a global position {R

Ii , tIi} to each image. First,
one typically solves for globally consistent rotations R

Ii using robust rotation averaging [8]. In
the second stage, one solves for globally consistent translations [9] followed by triangulation
of points X

k

and integration of point-to-camera constraints [10]. In the last stage, one usually
uses the global Structure-from-Motion results as an initialization for bundle adjustment as a
refinement. We follow the standard approach and, to estimate the extrinsic calibration of the
camera array, we build the pairwise transformation graph over multiple consecutive frames
at different time steps. In the optimization, we then constrain the relative transformations to
be equal between the same cameras in the camera array at different times (see Figure 7). This
modified parameterization of global Structure-from-Motion allows us to obtain the relative rigid
geometry of the camera array. Similar to the continuous refinement of the calibration, we only
self-calibrate the extrinsics once the viewing graph is well-conditioned. In our experiments,
this is usually the case after a small translational and rotational motion of the robot, which
provides enough multi-view constraints for the optimization. Furthermore, since the initial set
of extrinsic parameters is likely to be inaccurate, the triangulation of points is inaccurate or
fails for some points completely. Hence, we perform bundle adjustment and triangulation in
an alternating manner until convergence. In the next section, we evaluate the accuracy of our
calibration approach.

Figure 6: Viewing graph with camera images as vertices and relative transformations as edges.
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Figure 7: Viewing graph augmented with rigid camera constraints. We enforce the relative
transformations between cameras in the array (blue) and between time steps (gray) to be
consistent across time since the cameras are rigidly mounted.

3.4 Evaluation
Continuous Refinement We evaluate the accuracy of our calibration routine using the dataset
captured during the ground-truthing session at Wageningen. In this session, data was recorded
using the 10 camera array visualized in Figure 1. Moreover, the dataset contains an accurate
ground-truth trajectory of the robot pose acquired with a high precision laser tracker. We
are interested in evaluating the accuracy of the calibration with respect to the accuracy of the
trajectory estimated via SLAM as this is the main purpose of the multi-camera rig. To evaluate
the impact of the continuous calibration refinement during the operation of the robot, we thus
compare the average localization error over the entire trajectory computed using our SLAM
system [5]. We initialized the system using the values obtained from the offline calibration.
Without continuous refinement of the calibration, our system achieves an average localization
error of 0.18m over the complete sequence of 80m. If we only refine the rigid extrinsics of the
camera array, we achieve an average error of 0.16m over the complete sequence, while a joint
refinement of both the intrinsics and extrinsics leads to an error of 0.15m. We conclude that,
for this sequence, the refinement of parameters slightly improves the localization results. Due
to relatively short length of the sequence, we believe that this effect becomes more pronounced
when evaluating the continuous refinement over longer sequences and time frames. Note that
the continuous refinement of the extrinsic parameters has only a small performance impact and
does not impair the real-time capability of the SLAM system. As more ground-truth datasets
become available during the Trimbot project, we will re-evaluate the accuracy on the new
datasets as well.

Extrinsic Self-Calibration We evaluate the accuracy of our extrinsic self-calibration routine
by comparing it against the obtained extrinsics from the offline calibration as a ground-truth. We
compare the obtained extrinsic calibration both in terms of positional and rotational error. Fig-
ure 8 visualizes the obtained extrinsic calibration for the ground-truth dataset from Wageningen
for different steps in the self-calibration. Given no prior information about the extrinsics of the
calibration, we obtain an accurate estimation of the camera extrinsics. Figure 9 quantifies the
calibration accuracy after the global Structure-from-Motion initialization and after the bundle
adjustment. We observe that while the initial estimate after rotation and translation averaging
is typically rather inaccurate, the bundle adjustment step improves the results significantly
and leads to a very accurate calibration of around 0.5� rotational and 1.9mm translational
error. To evaluate the robustness of the self-calibration routine, we ran experiments on several
other datasets. Whenever there is well-constrained robot motion, our calibration routine yields
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Figure 8: Visualization of the estimated camera array configurations after different steps in the
online calibration (red) compared to the reference (offline) calibration (blue). Left: estimated
configuration after the global rotation and translation averaging steps. Right: estimated
configuration after the global bundle adjustment.

accurate results. In practice, we envision the robot to move in a pre-defined pattern for a few
seconds in order to obtain a reliable self-calibration. As more datasets become available and as
the calibration system is integrated into the robot, we will re-evaluate the performance of the
extrinsic self-calibration.

3.5 Outlook
In order to supersede the offline calibration entirely, there are two problems that need to be
addressed: First, it is necessary to also estimate the camera intrinsics. We are currently working
on this point to develop a full self-calibration pipeline. Second, the online calibration returns
the extrinsics of the camera up to an arbitrary scaling factor due to being based on images. This
scaling factor can be recovered through knowing a distance in the scene.
In order to recover this scale, we will place markers with known positions on the chassis of
the robot. As shown in the middle of Figure 2, one of the camera pairs observes the front of
the robot as the camera system is mounted on its back (cf. Figure 5). As such, these marker
points will always be visible in at least two cameras of the multi-camera rig. Both points will
be addressed in Deliverable D3.2, which evaluates the SLAM system.
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Figure 9: The calibration errors after calibration with the ‘around garden’ dataset. Top left the
orientation errors. Top right the orientation errors with adapted plot scale to show the large
position errors after Global SfM. At the bottom the position errors again with the usual plot
scale for readability and better comparison with previous results. Interestingly, Global SfM
returns very small orientation errors of 0.2� in average, while the position errors are large with
an average error of 17 cm. After the final refinement, the mean error is 0.50� for orientations
and 0.19 cm for positions.
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