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Abstract: A major goal in WP5 is an accurate scene flow estimation
software that can run at interactive framerates. In this report, we present
the current state of our research and demonstrate that it is on a good way
to achieve this goal. The chosen approach formulates disparity estimation
and optical flow estimation as end-to-end learning tasks that are solved via
deep learning. The learning approach will allow us to adapt to the specific
garden scenario and the specific camera type used in the project by training
on data that has been specifically created for this purpose. Challenges in the
scope of plants, such as heavy self-occlusion and fine details, can be treated
elegantly within such formulation. We present results that aim for the first
project demonstrator, which is supposed to trim a boxwood bush. However,
the approach we have been chosen is very generic and will be applicable
also to other plants in the later project stages. Moreover, it can support 3D
reconstruction in WP3.
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Figure 1: DispNet architecture. The network has a straightforward design and needs no pre-
or postprocessing. Shown here is the simple variant; the slightly more complex two-stream
correlation variant achieves better scores by making explicit use of the input images’ "rectified
stereo" property (we refer to our paper for details [1]). In the graphic, data flows from left
to right. The input images traverse a number of convolution layers in which many small
convolutional filters with learned weights gradually transform the data from image space into
an abstract representation within the network’s learned deep feature space. The blue shapes
visually represent this change by becoming smaller in the "spatial" dimensions (width, height)
but deeper. The first part of the network, up to the narrowest point, is called the "analysis",
"encoder", or "contracting" part. Afterwards, the "synthesis", "decoder", or "expanding" part
uses upconvolution layers to reassemble the network output back into image space.

1 DispNet: disparity estimation with a deep network
DispNet is a convolutional network architecture that is trained end-to-end to solve the task of
disparity estimation; see Figure 1. It receives a rectified stereo image pair as input and outputs
a disparity map for the left view of the pair. The learning approach requires a large amount of
training data. To this end, we created a large set of randomized rendered data and found that
training on such data generalizes well also to real imagery.

One potential advantage of a learning framework over previous work on disparity estimation
is the capability of deep networks to learn special priors for a certain type of data. In case of
Trimbot, this will be vegetation. The data we trained on so far, was not specific to vegetation.
Section 4 describes our ongoing work on generating data specific to the garden scenes in
Trimbot. We already verified the concept of specialization to a task on the public KITTI
benchmark1 [2], which specializes on an automotive scenario in a car. Finetuning the network
on this kind of data largely improved the results in this particular scenario. We conjecture that
the specialization for vegetation in garden scenes will be similarly successful.

Another large advantage of a learning approach is the fast runtime of deep networks on
GPUs. DispNet already provides interactive framerates (about 15Hz) at this early stage of the
project, although this capability was only planned for month 24. DispNet is currently the fastest
technique among the highest-scoring stereo disparity methods on the KITTI 2015 benchmark
and still yields very high accuracy.

For known camera parameters, depth can be directly derived from the disparities. Depth
is critical for the fine control tasks of the TrimBot project as it is an important cue for 3D
scene understanding. The bush cutting task will directly use depth from stereo to establish a
target surface for trimming. The later rose cutting task will use it indirectly while infering plant
structure, and successively cutting points on the plant.

1
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=

stereo
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Figure 2: FlowNet2 architecture. The multistream approach couples a general multistage
network which refines its own predictions and a specialized small-displacements network. Each
colored shape is a complete encoder-decoder network.

DispNet has been published in a conference paper [1], and we refer to this paper for technical
details about the method and the datasets on which it has been trained.

2 Optical flow estimation: FlowNet2
The optical flow estimator FlowNet2 is part of a work which is still under peer review for CVPR
2017 [3]. Like DispNet, FlowNet2 is a convolutional architecture, but it follows a multistage
approach in which it iteratively refines its own predictions; see Fig. 2. FlowNet2 can run at
interactive and realtime framerates, as well: we provide a number of networks for a wide range
of speed/accuracy tradeoff choices, but even the best and slowest networks run at 8 Hz. DispNet
and FlowNet2 together yield scene flow.

3 Camera
We have purchased the multi-camera system that is intended to be used on the robot and the
arm throughout the project2. The system can produce synchronized images from multiple
attached camera modules, with a resolution of 752⇥480 pixels (using the provided modules)
at standard framerates. Calibration was done using the Kalibr3 software on Apriltag4 targets.
After undistortion and rectification, slightly smaller images remain (see Figure 7).

2
https://github.com/PX4/uvc_ros_driver/wiki

3
https://github.com/ethz-asl/kalibr

4
https://people.csail.mit.edu/kaess/apriltags/
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Camera schematic with four stereo pairs Real camera with two stereo pairs

Figure 3: Camera setup. We did not use the camera’s builtin SGM stereo function.

4 Synthetic garden data
Our central approach to the reconstruction problems of TrimBot is to use machine learning, i.e.
to "train" self-learning systems by example and guidance to perform tasks, instead of explicitly
formulating explicit rules on how to process a specific input. There is no available training
dataset available for our purpose. We will follow the approach to generate our own data by
rendering garden scenes at a sufficient level of detail and with sufficient diversity to generalize
to other gardens.

4.1 Task-specific training data
The working environment of the project’s robot contains plants: intricate structures with com-
plex foliage, articulated and elastic motion, nonlambertian surfaces and unordered multiple
self-occlusion. These aspects present significant challenges to the robot and its software; they
break assumptions often made by vision algorithms, such as "the scene is not moving" or
"the appearance of a certain object does not change". Our machine learning approach has
the advantage of not relying on any explicit assumptions. However, assumptions could occur
implicitly: we design the scenes from which the training data is derived. A system trained
exclusively on data with Lambertian surface properties may well fail when presented with
specular objects during testing (i.e., in the real world).

Learning algorithms have a certain ability to generalize, i.e. to transfer their knowledge to
cope with data which differs somewhat from that seen during training, but this effect has limits:
training on data in which all leaves are 2cm long will not stop the system from coping with
3cm long leaves, but training on blue leaves could mean that green leaves are not understood
to be the same kind of object. Unfortunately, it is not generally possible to predict which
data characteristics will be important. Thus, the training data for this project should contain
as many of the relevant intricacies as possible. We are planning for at least the following:
nonrigidly moving plants; lighting effects such as specular reflection, translucency, and global
illumination; realistic "garden"-style scenes; weather effects (sunny/overcast sky); shadowing
by other objects, self-shadowing, and complex self-occlusion within objects. Key to the data
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Raw test bush "skeleton", BlenderTM view Fully modelled test bush, rendered view

Disparity groundtruth Segmentation into "branch" and "leaf" classes

Figure 4: Plant data. Modeling appearance and dynamics of real plants ensures that the
machine learning system will receive the relevant training data. Note that segmentation data
is not needed for the bush trimming task, but will be useful for the rose plants.

setup is the automated generation of plant structures for which we use a combination of publicly
available software (Blender5 and plugins, e.g. Sapling6) and our own extensions. Currently, we
are at the state of setting up first garden scenes manually. For a large scale, diverse dataset,
however, we plan for a partially automated software to create such scenes.

4.2 Camera-specific training data
Conventional vision algorithms work with manually defined descriptors, thresholds, tuned key-
point detectors etc. Ideally, such a system should work for all input data in all environments, but
this is an illusory goal for all but the most trivial tasks: for example, an object segmenter will
fail on blurry images if it has not been designed for this specific data fault, because blurriness
weakens or even removes information-carrying boundaries between objects which are important
segmentation cues.

Learning algorithms are afflicted by this as well: our experiment in Figure 6 demonstrates
how a disparity estimation system trained on "good" (clean, sharp, good colors) data performs
well on good data, but not as good on "bad" (blurry, overexposed) data. The advantage here is
that there is no need to manually design robustness against e.g. blurriness into the system: it

5
www.blender.org

6
https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Curve/

Sapling_Tree
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Figure 5: Environment data. Rendering synthetic plants within a simulated garden is an
intuitive way to be sure that not only the plants themselves but also secondary effects such as
lighting are natural. This experimental "garden" study was done manually, but we will explore
automated generation techniques.

suffices to train it using blurry images; the necessary invariance is learned autonomously.
The concept behind this is fundamentally the same as in Section 4.1, but the required

workloads are disjoint and independent; one happens before and the other after rendering. We
are exploring data post-processing steps to match the imaging characteristics of the project
camera (c.f. Figure 6).

5 Summary
The research work on dynamic reconstruction is on a good way. We have developed deep
networks for disparity estimation and optical flow estimation that show state-of-the-art perfor-
mance on regular benchmarks and run at interactive framerates. This software is already up
and running. Currently we are in the process to fully exploit the learning approach by creating
training data that is optimized for the used camera and garden scenes. A network trained on such
data is expected to specialize on the task and perform even much better. Apart from achieving
higher accuracy and robustness, this could also allow for smaller versions of our networks that
would run at interactive framerates on embedded devices.
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Stereo frame from an experimental setup using a Point Grey Bumblebee 2 stereo camera

Disparity estimate and training sample using original "clean" data

Disparity estimate and training sample using modified "degraded" data

Figure 6: Train-test data discrepancy. A DispNet [1] trained on clean synthetic data does not
perform well out of the box; the input images from a Point Grey Bumblebee 2 stereo camera
(https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems) show significant
radial blur after undistortion, as well as general blur and other faults). Training on data which
has been postprocessed to look more like the Bumblebee images leads to significantly more
detailed estimates, especially far away from the image center where the radial blur is the
strongest. Note that the CNN makes sensible "guesstimates" for areas which cannot actually
be measured from the data due to the necessarily differing views of the two camera eyes (left
border of left image).

timation,” in IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), arXiv:1512.02134, 2016. [Online]. Available: http://lmb.informatik.
uni-freiburg.de/Publications/2016/MIFDB16.

Version 1.0; 2016–12–31 Page 8 of 10 c� TrimBot2020 Consortium, 2016

http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16


IST – 688007, – TrimBot2020 Deliverable 5.1

[2] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[3] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: evolu-
tion of optical flow estimation with deep networks,” arXiv:1612.01925, Tech. Rep., Dec.
2016. [Online]. Available: http://lmb.informatik.uni- freiburg.de/
/Publications/2016/IMKDB16.

Version 1.0; 2016–12–31 Page 9 of 10 c� TrimBot2020 Consortium, 2016

http://lmb.informatik.uni-freiburg.de//Publications/2016/IMKDB16
http://lmb.informatik.uni-freiburg.de//Publications/2016/IMKDB16


IST – 688007, – TrimBot2020 Deliverable 5.1

Raw camera outputs

After removal of lens distortion, stereo-rectified

After cropping of invalid areas induced by undistortion and rectification

Figure 7: Disparity estimation on project
camera. An unmodified DispNet [1] produces
sensible but low-quality disparity maps on the
ETHZ camera due to discrepancies between its
training data and this test data (beside the less-
than-perfect image quality). Noteworthy points
include: Grayscale instead of color images;
excessive contrast and simulantenous over- and
underexposure; vignetting; defocus blur (which
even differs between the left and the right
camera).

Output of disparity network (for right view)
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Abstract

Recent work has shown that optical flow estimation can
be formulated as a supervised learning task and can be suc-
cessfully solved with convolutional networks. Training of
the so-called FlowNet was enabled by a large synthetically
generated dataset. The present paper extends the concept
of optical flow estimation via convolutional networks to dis-
parity and scene flow estimation. To this end, we propose
three synthetic stereo video datasets with sufficient realism,
variation, and size to successfully train large networks. Our
datasets are the first large-scale datasets to enable training
and evaluation of scene flow methods. Besides the datasets,
we present a convolutional network for real-time disparity
estimation that provides state-of-the-art results. By combin-
ing a flow and disparity estimation network and training it
jointly, we demonstrate the first scene flow estimation with
a convolutional network.

1. Introduction
Estimating scene flow means providing the depth and 3D

motion vectors of all visible points in a stereo video. It is
the “royal league” task when it comes to reconstruction and
motion estimation and provides an important basis for nu-
merous higher-level challenges such as advanced driver as-
sistance and autonomous systems. Research over the last
decades has focused on its subtasks, namely disparity esti-
mation and optical flow estimation, with considerable suc-
cess. The full scene flow problem has not been explored
to the same extent. While partial scene flow can be simply
assembled from the subtask results, it is expected that the
joint estimation of all components would be advantageous

⇤These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. Our datasets provide over 35000 stereo frames with
dense ground truth for optical flow, disparity and disparity change,
as well as other data such as object segmentation.

with regard to both efficiency and accuracy. One reason for
scene flow being less explored than its subtasks seems to be
a shortage of fully annotated ground truth data.

The availability of such data has become even more im-
portant in the era of convolutional networks. Dosovitskiy
et al. [4] showed that optical flow estimation can be posed
as a supervised learning problem and can be solved with a
large network. For training their network, they created a
simple synthetic 2D dataset of flying chairs, which proved
to be sufficient to predict accurate optical flow in general
videos. These results suggest that also disparities and scene
flow can be estimated via a convolutional network, ideally
jointly, efficiently, and in real-time. What is missing to im-
plement this idea is a large dataset with sufficient realism
and variability to train such a network and to evaluate its
performance.



Dataset MPI Sintel [2] KITTI Benchmark Suite [16] SUN3D[26] NYU2[21] Ours
2012 2015 FlyingThings3D Monkaa Driving

#Training frames 1064 194 200† 2.5M 1449 21818 8591 4392
#Test frames 564 195 200† — — 4248 — —
#Training scenes 25 194 200 415 464 2247 8 1
Resolution 1024⇥436 1226⇥370 1242⇥375 640⇥480 640⇥480 960⇥540 960⇥540 960⇥540
Disparity/Depth 3 sparse sparse 3 3 3 3 3
Disparity change 7 7 7 7 7 3 3 3
Optical flow 3 (sparse) (sparse) 7 7 3 3 3
Segmentation 3 7 7 (3) 3 3 3 3
Motion boundaries 3 7 7 7 7 3 3 3
Naturalism (3) 3 3 3 3 7 7 (3)

Table 1. Comparison of available datasets: our new collection offers more annotated data and greater data variety than any existing choice.
All our data has fully contiguous, dense, accurate ground truth. †Note that in KITTI 2015, a scene is a sequence of 21 stereo pairs, but
groundtruth is only provided for a single frame.

In this paper, we present a collection of three such
datasets, made using a customized version of the open
source 3D creation suite Blender3. Our effort is similar
in spirit to the Sintel benchmark [2]. In contrast to Sintel,
our dataset is large enough to facilitate training of convolu-
tional networks, and it provides ground truth for scene flow.
In particular, it includes stereo color images and ground
truth for bidirectional disparity, bidirectional optical flow
and disparity change, motion boundaries, and object seg-
mentation. Moreover, the full camera calibration and 3D
point positions are available, i.e. our dataset also covers
RGBD data. The datasets are freely available online4.

We cannot exploit the full potential of this dataset in a
single paper, but we already demonstrate various usage ex-
amples in conjunction with convolutional network training.
We train a network for disparity estimation, which yields
competitive performance also on previous benchmarks, es-
pecially among those methods that run in real-time. Finally,
we also present a network for scene flow estimation and
provide the first quantitative numbers on full scene flow on
a sufficiently sized test set.

2. Related work
Datasets. The first significant efforts to create standard

datasets were the Middlebury datasets for stereo dispar-
ity estimation [20] and optical flow estimation [1]. While
the stereo dataset consists of real scenes, the optical flow
dataset is a mixture of real scenes and rendered scenes.
Both datasets are very small in today’s terms. Especially
the small test sets have led to heavy manual overfitting. An
advantage of the stereo dataset is the availability of relevant
real scenes, especially in the latest high-resolution version
from 2014 [19].

MPI Sintel [2] is an entirely synthetic dataset derived
from a short open source animated 3D movie. It provides

3https://www.blender.org/
4http://lmb.informatik.uni-freiburg.de/resources/datasets/

dense ground truth for optical flow. Since very recently, a
beta testing version with disparities is available for training.
With 1064 training frames, the Sintel dataset is the largest
dataset currently available. It contains sufficiently realis-
tic scenes including natural image degradations such as fog
and motion blur. The authors put much effort into the cor-
rectness of the ground truth for all frames and pixels. This
makes the dataset a very reliable test set for comparison of
methods. However, for training convolutional networks, the
dataset is still too small.

The KITTI dataset was produced in 2012 [8] and ex-
tended in 2015 [16]. It contains stereo videos of road scenes
from a calibrated pair of cameras mounted on a car. Ground
truth for optical flow and disparity is obtained from a 3D
laser scanner combined with the egomotion data of the car.
While the dataset contains real data, the acquisition method
restricts the ground truth to static parts of the scene. More-
over, the laser only provides sparse data up to a certain dis-
tance and height. For the most recent version, 3D models
of cars were fitted to the point clouds to obtain a denser la-
beling and to also include moving objects. However, the
ground truth in these areas is still an approximation.

Dosovitskiy et al. [4] trained convolutional networks for
optical flow estimation on a synthetic dataset of moving 2D
chair images superimposed on natural background images.
This dataset is large but limited to single-view optical flow
and does not contain any 3D motions.

Both the latest Sintel dataset and the KITTI dataset can
be used to estimate scene flow with some restrictions. In
occluded areas (visible in one frame but not in the other),
ground truth for scene flow is not available. On KITTI, the
most interesting component of scene flow, namely the 3D
motion of foreground points, is missing or approximated via
fitted CAD models of cars. A comprehensive overview of
the most important comparable datasets and their features is
given in Table 1.

Convolutional networks. Convolutional networks [15]
have proven very successful for a variety of recognition

https://www.blender.org/
http://lmb.informatik.uni-freiburg.de/resources/datasets/


tasks, such as image classification [14]. Recent applica-
tions of convolutional networks include also depth estima-
tion from single images [6], stereo matching [27], and opti-
cal flow estimation [4].

The FlowNet of Dosovitskiy et al. [4] is most related to
our work. It uses an encoder-decoder architecture with ad-
ditional crosslinks between contracting and expanding net-
work parts, where the encoder computes abstract features
from receptive fields of increasing size, and the decoder
reestablishes the original resolution via an expanding up-
convolutional architecture [5]. We adapt this approach for
disparity estimation.

The disparity estimation method in Žbontar et al. [27]
uses a Siamese network for computing matching distances
between image patches. To finally estimate the disparity,
the authors then perform cross-based cost aggregation [28]
and semi-global matching (SGM) [10]. In contrast to our
work, Žbontar et al. have no end-to-end training of a convo-
lutional network on the disparity estimation task, with cor-
responding consequences for computational efficiency and
elegance.

Scene flow. While there are hundreds of papers on dis-
parity estimation and optical flow estimation, there are only
a few on scene flow. None of them uses a learning approach.

Scene flow estimation was popularized for the first time
by the work of Vedula et al. [22] who analyzed different
possible problem settings. Later works were dominated by
variational methods. Huguet and Devernay [11] formulated
scene flow estimation in a joint variational approach. Wedel
et al. [25] followed the variational framework but decoupled
the disparity estimation for larger efficiency and accuracy.
Vogel et al. [24] combined the task of scene flow estimation
with superpixel segmentation using a piecewise rigid model
for regularization. Quiroga et al. [17] extended the regular-
izer further to a smooth field of rigid motion. Like Wedel
et al. [25] they decoupled the disparity estimation and re-
placed it by the depth values of RGBD videos.

The fastest method in KITTI’s scene flow top 7 is from
Cech et al. [3] with a runtime of 2.4 seconds. The method
employs a seed growing algorithm for simultaneous dispar-
ity and optical flow estimation.

3. Definition of scene flow
Optical flow is a projection of the world’s 3D motion

onto the image plane. Commonly, scene flow is consid-
ered as the underlying 3D motion field that can be computed
from stereo videos or RGBD videos. Assume two succes-
sive time frames t and t+1 of a stereo pair, yielding four
images (ItL, ItR, It+1

L , It+1
R ). Scene flow provides for each

visible point in one of these four images the point’s 3D po-
sition and its 3D motion vector [23].

These 3D quantities can be computed only in the case
of known camera intrinsics and extrinsics. A camera-

Left:

Right:

t-1 t t+1
Forward

Flow
Backward

Flow

Disp.

Disp.Disp. Ch.Disp. Ch.

Figure 2. Given stereo images at times t�1, t and t+1, the arrows
indicate disparity and flow relations between them. The red com-
ponents are commonly used to estimate scene flow. In our datasets
we provide all relations including the blue arrows.

independent definition of scene flow is obtained by the sep-
arate components optical flow, the disparity, and the dispar-
ity change [11], cf. Fig. 2. This representation is complete
in the sense that the visible 3D points and their 3D motion
vectors can be computed from the components if the camera
parameters are known.

Given the disparities at t and t+1, the disparity change
is almost redundant. Thus, in the KITTI 2015 scene flow
benchmark [16], only optical flow and disparities are evalu-
ated. In this case, scene flow can be reconstructed only for
surface points that are visible in both the left and the right
frame. Especially in the context of convolutional networks,
it is particularly interesting to estimate also depth and mo-
tion in partially occluded areas. Moreover, reconstruction
of the 3D motions from flow and disparities is more sensi-
tive to noise, because a small error in the optical flow can
lead to a large error in the 3D motion vector.

4. Three rendered datasets

We created a synthetic dataset suite that consists of three
subsets and provides the complete ground truth scene flow
(incl. disparity change) in forward and backward direction.
To this end, we used the open source 3D creation suite
Blender to animate a large number of objects with complex
motions and to render the results into tens of thousands of
frames. We modified the pipeline of Blender’s internal ren-
der engine to produce – besides stereo RGB images – three
additional data passes per frame and view. These provide
3D positions of all visible surface points, as well as their
future and past 3D positions. The pixelwise difference be-
tween two such data passes for a given camera view results
in an ”image” of 3D motion vectors – the complete scene
flow ground truth as seen by this camera. Note that the in-
formation is complete even in occluded regions since the
render engine always has full knowledge about all (visible
and invisible) scene points.

All non-opaque materials – notably, most car windows
– were rendered as fully transparent to avoid consistency
problems in the 3D data. To prevent layer blending artifacts,



we rendered all non-RGB data without antialiasing.
Given the intrinsic camera parameters (focal length,

principal point) and the render settings (image size, virtual
sensor size and format), we project the 3D motion vector
of each pixel into a 2D pixel motion vector coplanar to the
imaging plane: the optical flow. Depth is directly retrieved
from a pixel’s 3D position and converted to disparity using
the known configuration of the virtual stereo rig. We com-
pute the disparity change from the depth component of the
3D motion vector. Examples are shown in Fig. 1,3,8.

In addition, we rendered object segmentation masks in
which each pixel’s value corresponds to the unique index
of its object. Objects can consist of multiple subparts, of
which each can have a separate material (with own appear-
ance properties such as textures). We make use of this and
render additional segmentation masks, where each pixel en-
codes its material’s index. The recently available beta ver-
sion of Sintel also includes this data.

Similar to the Sintel dataset, we also provide object and
material segmentations, as well as motion boundaries which
highlight pixels between at least two moving objects, if the
following holds: the difference in motion between the ob-
jects is at least 1.5 pixels, and the boundary segment covers
an area of at least 10 pixels. The thresholds were chosen to
match the results of Sintel’s segmentation.

For all frames and views, we provide the full camera
intrinsics and extrinsics matrices. Those can be used for
structure from motion or other tasks that require camera
tracking. We rendered all image data using a virtual focal
length of 35mm on a 32mm wide simulated sensor. For the
Driving dataset we added a wide-angle version using a fo-
cal length of 15mm which is visually closer to the existing
KITTI datasets.

Like the Sintel dataset, our datasets also include two dis-
tinct versions of every image: the clean pass shows col-
ors, textures and scene lighting but no image degradations,
while the final pass additionally includes postprocessing ef-
fects such as simulated depth-of-field blur, motion blur, sun-
light glare, and gamma curve manipulation.

To handle the massive amount of data (2.5TB), we com-
pressed all RGB image data to the lossy but high-quality
WebP5 format (we provide both WebP and lossless PNG
versions). Non-RGB data was compressed losslessly.

4.1. FlyingThings3D

The main part of the new data collection consists of ev-
eryday objects flying along randomized 3D trajectories. We
generated about 25000 stereo frames with ground truth data.
Instead of focusing on a particular task (like KITTI) or en-
forcing strict naturalism (like Sintel), we rely on random-
ness and a large pool of rendering assets to generate orders
of magnitude more data than any existing option, without

5https://developers.google.com/speed/webp/

Figure 3. Example scenes from our FlyingThings3D dataset.
3rd row: Optical flow images, 4th row: Disparity images,
5th row: Disparity change images. Best viewed on a color screen
in high resolution (data images normalized for display).

running a risk of repetition or saturation. Data generation is
fast, fully automatic, and yields dense accurate ground truth
for the complete scene flow task. The motivation for creat-
ing this dataset is to facilitate training of large convolutional
networks, which should benefit from the large variety.

The base of each scene is a large textured ground plane.
We generated 200 static background objects with shapes
that were randomly chosen from cuboids and deformed
cylinders. Each object was randomly scaled, rotated, tex-
tured and then placed on the ground plane.

To populate the scene, we downloaded 35927 detailed
3D models from Stanford’s ShapeNet6 [18] database. From
these we assembled a training set of 32872 models and a
testing set of size 3055 (model categories are disjoint).

We sampled between 5 and 20 random objects from this
object collection and randomly textured every material of
every object. The camera and all ShapeNet objects were
translated and rotated along linear 3D trajectories modeled
such that the camera can see the objects, but with random-
ized displacements.

The texture collection was a combination of procedu-
ral images created using ImageMagick7, landscape and
cityscape photographs from Flickr8, and texture-style pho-

6http://shapenet.cs.stanford.edu/
7http://www.imagemagick.org/script/index.php
8https://www.flickr.com/ Non-commercial public license. We used the

code framework by Hays and Efros [9]

https://developers.google.com/speed/webp/
http://shapenet.cs.stanford.edu/
http://www.imagemagick.org/script/index.php
https://www.flickr.com/


KITTI 2015 Driving (ours)

Figure 4. Example frames from the 2015 version of the KITTI
benchmark suite [16] and our new Driving dataset. Both show
many static and moving cars from various realistic viewpoints, thin
objects, complex shadows, textured ground, and challenging spec-
ular reflections.

tographs from Image*After9. Like the 3D models, also the
textures were split into disjoint training and testing parts.

For the final pass images, the scenes vary in presence and
intensity of motion blur and defocus blur.

4.2. Monkaa

The second part of our dataset is made from the open
source Blender assets of the animated short film Monkaa10.
In this regard, it resembles the MPI Sintel dataset. Monkaa
contains nonrigid and softly articulated motion as well as
visually challenging fur. Beyond that, there are few visual
similarities to Sintel; the Monkaa movie does not strive for
the same amount of naturalism.

We selected a number of suitable movie scenes and addi-
tionally created entirely new scenes using parts and pieces
from Monkaa. To increase the amount of data, we rendered
our selfmade scenes in multiple versions, each with random
incremental changes to the camera’s rotation and motion
path.

4.3. Driving

The Driving scene is a mostly naturalistic, dynamic
street scene from the viewpoint of a driving car, made to
resemble the KITTI datasets. It uses car models from the
same pool as the FlyingThings3D dataset and additionally
employs highly detailed tree models from 3D Warehouse11

and simple street lights. In Fig. 4 we show selected frames
from Driving and lookalike frames from KITTI 2015.

Our stereo baseline is set to 1 Blender unit, which to-
gether with a typical car model width of roughly 2 units is
comparable to KITTI’s setting (54cm baseline, 186cm car
width [8]).

9http://www.imageafter.com/textures.php
10https://cloud.blender.org/bi/monkaa/
11https://3dwarehouse.sketchup.com/

5. Networks
To prove the applicability of our new synthetic datasets

to scene flow estimation, we use them to train convolu-
tional networks. In general, we follow the architecture of
the FlowNet [4]: each network consists of a contractive part
and an expanding part with long-range links between them.
The contracting part contains convolutional layers with oc-
casional strides of 2, resulting in a total downsampling fac-
tor of 64. This allows the network to estimate large dis-
placements. The expanding part of the network then gradu-
ally and nonlinearly upsamples the feature maps, taking into
account also the features from the contractive part. This is
done by a series of up-convolutional and convolutional lay-
ers. Note that there is no data bottleneck in the network,
as information can also pass through the long-range con-
nections between contracting and expanding layers. For an
illustration of the overall architecture we refer to the figures
in Dosovitskiy et al. [4].

For disparity estimation we propose the basic architec-
ture DispNet described in Table 2. We found that additional
convolutions in the expanding part yield smoother disparity
maps than the FlowNet architecture (see Fig. 6).

We also tested an architecture that makes use of an ex-
plicit correlation layer [4], which we call DispNetCorr. In
this network, the two images are processed separately up
to layer conv2 and the resulting features are then correlated
horizontally. We consider a maximum displacement of 40
pixels, which corresponds to 160 pixels in the input image.
Compared to the 2D correlation in Dosovitskiy et al. [4],
1D correlation is computationally much cheaper and allows
us to cover larger displacements with finer sampling than in
the FlowNet, which used a stride of 2 for the correlation.

We also train a FlowNet and a joint SceneFlowNet for
scene flow estimation by combining and fine-tuning pre-
trained networks for disparity and flow. This is illustrated
in Figure 5. A FlowNet predicts flow between the left and
right image and two DispNets predict the disparities at t and
t+1. The networks in this case do not contain correlation
layers and convolutions between up-convolutions. We then
fine-tune the large combined network to estimate flow, dis-
parity, and additionally disparity change.

Training. All networks are trained end-to-end, given the
images as input and the ground truth (optical flow, disparity,
or scene flow) as output. We employ a custom version of
Caffe [12] and make use of the Adam optimizer [13]. We
set �1 = 0.9 and �2 = 0.999 as in Kingma et al. [13]. As
learning rate we used � = 0.0001 and divided it by 2 every
200k iterations starting from iteration 400k.

Due to the depth of the networks and the direct con-
nections between contracting and expanding layers (see Ta-
ble 2), lower layers get mixed gradients if all six losses are
active. We found that using a loss weight schedule can be
beneficial: we start training with a loss weight of 1 assigned

http://www.imageafter.com/textures.php
https://cloud.blender.org/bi/monkaa/
https://3dwarehouse.sketchup.com/


Method KITTI 2012 KITTI 2015 Driving FlyingThings3D Monkaa Sintel Time
train test train test (D1) clean clean test clean clean train

DispNet 2.38 — 2.19 — 15.62 2.02 5.99 5.38 0.06s
DispNetCorr1D 1.75 — 1.59 — 16.12 1.68 5.78 5.66 0.06s
DispNet-K 1.77 — (0.77) — 19.67 7.14 14.09 21.29 0.06s
DispNetCorr1D-K 1.48 1.0† (0.68) 4.34% 20.40 7.46 14.93 21.88 0.06s
SGM 10.06 — 7.21 10.86% 40.19 8.70 20.16 19.62 1.1s
MC-CNN-fst — — — 4.62% 19.58 4.09 6.71 11.94 0.8s
MC-CNN-acrt — 0.9 — 3.89% — — — — 67s

Table 3. Disparity errors. All measures are endpoint errors, except for the D1-all measure (see the text for explanation) for KITTI 2015
test. †This result is from a network fine-tuned on KITTI 2012 train.

Name Kernel Str. Ch I/O InpRes OutRes Input
conv1 7⇥7 2 6/64 768⇥384 384⇥192 images
conv2 5⇥5 2 64/128 384⇥192 192⇥96 conv1
conv3a 5⇥5 2 128/256 192⇥96 96⇥48 conv2
conv3b 3⇥3 1 256/256 96⇥48 96⇥48 conv3a
conv4a 3⇥3 2 256/512 96⇥48 48⇥24 conv3b
conv4b 3⇥3 1 512/512 48⇥24 48⇥24 conv4a
conv5a 3⇥3 2 512/512 48⇥24 24⇥12 conv4b
conv5b 3⇥3 1 512/512 24⇥12 24⇥12 conv5a
conv6a 3⇥3 2 512/1024 24⇥12 12⇥6 conv5b
conv6b 3⇥3 1 1024/1024 12⇥6 12⇥6 conv6a
pr6+loss6 3⇥3 1 1024/1 12⇥6 12⇥6 conv6b
upconv5 4⇥4 2 1024/512 12⇥6 24⇥12 conv6b
iconv5 3⇥3 1 1025/512 24⇥12 24⇥12 upconv5+pr6+conv5b
pr5+loss5 3⇥3 1 512/1 24⇥12 24⇥12 iconv5
upconv4 4⇥4 2 512/256 24⇥12 48⇥24 iconv5
iconv4 3⇥3 1 769/256 48⇥24 48⇥24 upconv4+pr5+conv4b
pr4+loss4 3⇥3 1 256/1 48⇥24 48⇥24 iconv4
upconv3 4⇥4 2 256/128 48⇥24 96⇥48 iconv4
iconv3 3⇥3 1 385/128 96⇥48 96⇥48 upconv3+pr4+conv3b
pr3+loss3 3⇥3 1 128/1 96⇥48 96⇥48 iconv3
upconv2 4⇥4 2 128/64 96⇥48 192⇥96 iconv3
iconv2 3⇥3 1 193/64 192⇥96 192⇥96 upconv2+pr3+conv2
pr2+loss2 3⇥3 1 64/1 192⇥96 192⇥96 iconv2
upconv1 4⇥4 2 64/32 192⇥96 384⇥192 iconv2
iconv1 3⇥3 1 97/32 384⇥192 384⇥192 upconv1+pr2+conv1
pr1+loss1 3⇥3 1 32/1 384⇥192 384⇥192 iconv1

Table 2. Specification of DispNet architecture. The contracting
part consists of convolutions conv1 to conv6b. In the expanding
part, upconvolutions (upconvN), convolutions (iconvN, prN) and
loss layers are alternating. Features from lower layers are concate-
nated with higher layer features. The predicted disparity image is
output by pr1.

to the lowest resolution loss loss6 and a weight of 0 for
all other losses (that is, all other losses are switched off).
During training, we progressively increase the weights of
losses with higher resolution and deactivate the low resolu-
tion losses. This enables the network to first learn a coarse
representation and then proceed with finer resolutions with-
out losses constraining intermediate features.

Data augmentation. Despite the large training set, we
chose to perform data augmentation to introduce more di-
versity into the training data at almost no extra cost12. We
perform spatial (rotation, translation, cropping, scaling) and
chromatic transformations (color, contrast, brightness), and
we use the same transformation for all 2 or 4 input images.

12The computational bottleneck is in reading the training samples from
disk, whereas data augmentation is performed on the fly.

}
FlowNet

DispNet

DispNet

Figure 5. Interleaving the weights of a FlowNet (green) and two
DispNets (red and blue) to a SceneFlowNet. For every layer, the
filter masks are created by taking the weights of one network (left)
and setting the weights of the other networks to zero, respectively
(middle). The outputs from each network are then concatenated to
yield one big network with three times the number of inputs and
outputs (right).

For disparity, any rotation or vertical shift would break
the epipolar constraint, and horizontal shifts between stereo
views could lead to negative disparities.

6. Experiments
Evaluation of existing methods. We evaluated several
existing disparity methods on our new dataset. Namely,
for disparity we evaluate the state-of-the-art method of
Žbontar and LeCun [27] and the popular Semi-Global
Matching [10] approach with a block matching implemen-
tation from OpenCV13. Results are shown together with
those of our DispNets in Table 3. We use the endpoint error
(EPE) as error measure in most cases, with the only excep-
tion of KITTI 2015 test set where only the D1-all error mea-
sure is reported by the KITTI evaluation server (percentage
of pixels with estimation error > 3px and > 5% of the true
disparity).

DispNet. We train DispNets on the FlyingThings3D
dataset and then optionally fine-tune on KITTI. The fine-

13http://docs.opencv.org/2.4/modules/calib3d/doc/camera calibration
and 3d reconstruction.html#stereosgbm

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm


Figure 6. Close-up of a predicted disparity map without (left) and
with (right) convolutions between up-convolutions. Note how the
prediction on the right is much smoother.

tuned networks are denoted by a ‘-K’ suffix in the table. At
submission time, DispNetCorr fine-tuned on KITTI 2015
was second best in the KITTI 2015 top results table, slightly
behind MC-CNN-acrt [27] but being roughly 1000 times
faster. On KITTI resolution it runs at 15 frames per second
on an Nvidia GTX Titan X GPU. For foreground pixels (be-
longing to car models) our error is roughly half that of [27].
The network achieves an error that is ⇠30% lower than the
best real-time method reported in the table, Multi-Block-
Matching [7]. Also on the other datasets DispNet performs
well and outperforms both SGM and MC-CNN.

While fine-tuning on KITTI improves the results on this
dataset, it increases errors on other datasets. We explain this
significant performance drop by the fact that KITTI 2015
only contains relatively small disparities, up to roughly 150
pixels, while the other datasets contain some disparities of
500 pixels and more. When fine-tuned on KITTI, the net-
work seems to lose its ability to predict large displacements,
hence making huge errors on these.

We introduced several modifications to the network ar-
chitecture compared to the FlowNet [4]. First, we added
convolutional layers between up-convolutional layers in the
expanding part of the network. As expected, this allows the
network to better regularize the disparity map and predict
smoother results, as illustrated in Fig. 6. The result is a
⇠15% relative EPE decrease on KITTI 2015.

Second, we trained a version of our network with a 1D
correlation layer. In contrast to Dosovitskiy et al. [4], we
find that networks with correlation in many cases improve
the performance (see Table 3). A likely plausible explana-
tion is that the 1D nature of the disparity estimation prob-
lem allows us to compute correlations at a finer grid than
the FlowNet.

SceneFlowNet. As mentioned in Sec. 5, to construct a
SceneFlowNet, we first train a FlowNet and a DispNet, then
combine them as described in Fig. 5 and train the combina-
tion. Table 4 shows the results of the initial networks and
the SceneFlowNet. We observe that solving the joint task
yields better results than solving the individual tasks. The
final results on our datasets are given in Table 5 and a qual-

Flow Disparity Disp. Ch
FlowNet 13.78
DispNet 2.41
FlowNet +500k 12.18
DispNet +500k 2.37
SceneFlowNet +500k 10.99 2.21 0.79

Table 4. Performance of solving the single tasks compared to solv-
ing the joint scene flow task, trained and tested on FlyingTh-
ings3D. FlowNet was initially trained for 1.2M and DispNet for
1.4M iterations, +500k denotes training for 500k more iterations.
The SceneFlowNet is initialized with the FlowNet and DispNet.
Solving the joint task yields better results in each individual task.

SceneFlowNet Driving FlyingThings3D Monkaa
Flow 23.53 10.99 6.54
Disparity 15.35 2.21 6.59
Disp. change 16.34 0.80 0.78

Table 5. Endpoint errors for the evaluation of our SceneFlowNet
on the presented datasets. The Driving dataset contains the largest
disparities, flows and disparity changes, resulting in large errors.
The FlyingThings3D dataset contains large flows, while Monkaa
contains smaller flows and larger disparities.

itative example from FlyingThings3D is shown in Fig. 8.
Although the FlyingThings3D dataset is more sophisti-

cated than the FlyingChairs dataset, training on this dataset
did not yield a FlowNet that performs better than training
on FlyingChairs. Notwithstanding the fact that FlyingTh-
ings3D, in contrast to FlyingChairs, offers the possibility to
train networks for disparity and scene flow estimation, we
are investigating how 3D datasets can also improve the per-
formance of FlowNet.

7. Conclusion
We have introduced a synthetic dataset containing over

35000 stereo image pairs with ground truth disparity, opti-
cal flow, and scene flow. While our motivation was to create
a sufficiently large dataset that is suitable to train convolu-
tional networks to estimate these quantities, the dataset can
also serve for evaluation of other methods. This is particu-
larly interesting for scene flow, where there has been a lack
of datasets with ground truth.

We have demonstrated that the dataset can indeed be
used to successfully train large convolutional networks: the
network we trained for disparity estimation is on par with
the state of the art and runs 1000 times faster. A first ap-
proach of training the network for scene flow estimation us-
ing a standard network architecture also shows promising
results. We are convinced that our dataset will help boost
deep learning research for such challenging vision tasks as
stereo, flow and scene flow estimation.



RGB image (L) DispNetCorr1D-K MC-CNN prediction SGM prediction

RGB image (L) Disparity GT DispNetCorr1D MC-CNN prediction SGM prediction

Figure 7. Disparity results. Rows from top to bottom: KITTI 2012, KITTI 2015, FlyingThings3D (clean), Monkaa (clean), Sintel (clean).
Note how the DispNet prediction is basically noise-free.

RGB image 0/1 (L) RGB image 0/1 (R) flow GT / prediction disp GT / prediction �disp GT / prediction

Figure 8. Results of our SceneFlowNet created from pretrained FlowNet and DispNets. The disparity change was added and the network
was fine-tuned on FlyingThings3D for 500k iterations.
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Abstract

The FlowNet demonstrated that optical flow estimation
can be cast as a learning problem. However, the state of
the art with regard to the quality of the flow has still been
defined by traditional methods. Particularly on small dis-
placements and real-world data, FlowNet cannot compete
with variational methods. In this paper, we advance the
concept of end-to-end learning of optical flow and make it
work really well. The large improvements in quality and
speed are caused by three major contributions: first, we
focus on the training data and show that the schedule of
presenting data during training is very important. Second,
we develop a stacked architecture that includes warping
of the second image with intermediate optical flow. Third,
we elaborate on small displacements by introducing a sub-
network specializing on small motions. FlowNet 2.0 is only
marginally slower than the original FlowNet but decreases
the estimation error by more than 50%. It performs on par
with state-of-the-art methods, while running at interactive
frame rates. Moreover, we present faster variants that al-
low optical flow computation at up to 140fps with accuracy
matching the original FlowNet.

1. Introduction
The FlowNet by Dosovitskiy et al. [10] represented a

paradigm shift in optical flow estimation. The idea of using
a simple convolutional CNN architecture to directly learn
the concept of optical flow from data was completely dis-
joint from all the established approaches. However, first im-
plementations of new ideas often have a hard time compet-
ing with highly fine-tuned existing methods, and FlowNet
was no exception to this rule. It is the successive consolida-
tion that resolves the negative effects and helps us appreci-
ate the benefits of new ways of thinking.

The present paper is about a consolidation of the
FlowNet idea. The resulting FlowNet 2.0 inherits the advan-
tages of the original FlowNet, such as mastering large dis-
placements, correct estimation of very fine details in the op-
tical flow field, the potential to learn priors for specific sce-

Figure 1. We present an extension of FlowNet. FlowNet 2.0 yields
smooth flow fields, preserves fine motion details and runs at 8 to
140fps. The accuracy on this example is four times higher than
with the original FlowNet.

narios, and fast runtimes. At the same time, it resolves prob-
lems with small displacements and noisy artifacts in esti-
mated flow fields. This leads to a dramatic performance im-
provement on real-world applications such as action recog-
nition and motion segmentation, bringing FlowNet 2.0 to
the state-of-the-art level.

The way towards FlowNet 2.0 is via several evolutionary,
but decisive modifications that are not trivially connected
to the observed problems. First, we evaluate the influence
of dataset schedules. Interestingly, the more sophisticated
training data provided by Mayer et al. [18] leads to infe-
rior results if used in isolation. However, a learning sched-
ule consisting of multiple datasets improves results signifi-
cantly. In this scope, we also found that the FlowNet version
with an explicit correlation layer outperforms the version
without such layer. This is in contrast to the results reported
in Dosovitskiy et al. [10].

As a second contribution, we introduce a warping oper-
ation and show how stacking multiple networks using this
operation can significantly improve the results. By varying
the depth of the stack and the size of individual components
we obtain many network variants with different size and
runtime. This allows us to control the trade-off between ac-
curacy and computational resources. We provide networks
for the spectrum between 8fps and 140fps.

Finally, we focus on small, subpixel motion and real-

1



Figure 2. Schematic view of complete architecture: To compute large displacement optical flow we combine multiple FlowNets. Braces
indicate concatenation of inputs. Brightness Error is the difference between the first image and the second image warped with the previously
estimated flow. To optimally deal with small displacements, we introduce smaller strides in the beginning and convolutions between
upconvolutions into the FlowNetS architecture. Finally we apply a small fusion network to provide the final estimate.

world data. To this end, we created a special training dataset
and a specialized network. We show that the architecture
trained with this dataset performs well on small motions
typical for real-world videos. To reach optimal performance
on arbitrary displacements, we add a network that learns to
fuse the former stacked network with the small displace-
ment network in an optimal manner.

The final network outperforms the previous FlowNet by
a large margin and performs on par with state-of-the-art
methods on the Sintel and KITTI benchmarks. It can es-
timate small and large displacements with very high level
of detail while providing interactive frame rates.

2. Related Work

End-to-end optical flow estimation with convolutional
networks was proposed by Dosovitskiy et al. in [10]. Their
model, dubbed FlowNet, takes a pair of images as input
and outputs the flow field. Following FlowNet, several
papers have studied optical flow estimation with CNNs:
featuring a 3D convolutional network [30], an unsuper-
vised learning objective [1, 33], carefully designed rotation-
ally invariant architectures [28], or a pyramidal approach
based on the coarse-to-fine idea of variational methods [20].
None of these methods significantly outperforms the origi-
nal FlowNet.

An alternative approach to learning-based optical flow
estimation is to use CNNs for matching image patches.
Thewlis et al. [29] formulate Deep Matching [31] as a con-
volutional network and optimize it end-to-end. Gadot &
Wolf [12] and Bailer et al. [3] learn image patch descrip-
tors using Siamese network architectures. These methods

can reach good accuracy, but require exhaustive matching
of patches. Thus, they are restrictively slow for most prac-
tical applications. Moreover, patch based approaches lack
the possibility to use the larger context of the whole image
because they operate on small image patches.

Convolutional networks trained for per-pixel prediction
tasks often produce noisy or blurry results. As a remedy,
out-of-the-box optimization can be applied to the network
predictions as a postprocessing operation, for example, op-
tical flow estimates can be refined with a variational ap-
proach [10]. In some cases, this refinement can be ap-
proximated by neural networks: Chen & Pock [9] formu-
late reaction diffusion model as a CNN and apply it to im-
age denoising, deblocking and superresolution. Recently,
it has been shown that similar refinement can be obtained
by stacking several convolutional networks on top of each
other. This led to improved results in human pose estima-
tion [17, 8] and semantic instance segmentation [22]. In
this paper we adapt the idea of stacking multiple networks
to optical flow estimation.

Our network architecture includes warping layers that
compensate for some already estimated preliminary motion
in the second image. The concept of image warping is com-
mon to all contemporary variational optical flow methods
and goes back to the work of Lucas & Kanade [16]. In Brox
et al. [6] it was shown to correspond to a numerical fixed
point iteration scheme coupled with a continuation method.

The strategy of training machine learning models on a
series of gradually increasing tasks is known as curriculum
learning [5]. The idea dates back at least to Elman [11],
who showed that both the evolution of tasks and the network
architectures can be beneficial in the language processing
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scenario. In this paper we revisit this idea in the context
of computer vision and show how it can lead to dramatic
performance improvement on a complex real-world task of
optical flow estimation.

3. Dataset Schedules
High quality training data is crucial for the success of

supervised training. We investigated the differences in the
quality of the estimated optical flow depending on the pre-
sented training data. Interestingly, it turned out that not only
the kind of data is important but also the order in which it is
presented during training.

The original FlowNets [10] were trained on the Fly-
ingChairs dataset (we will call it Chairs). This rather sim-
plistic dataset contains about 22k image pairs of chairs
superimposed on random background images from Flickr.
Random affine transformations are applied to chairs and
background to obtain the second image and ground truth
flow fields. The dataset contains only planar motions.

The FlyingThings3D (Things3D) dataset proposed by
Mayer et al. [18] can be seen as a three-dimensional version
of the FlyingChairs. The dataset consists of 22k renderings
of random scenes showing 3D models from the ShapeNet
dataset [23] moving in front of static 3D backgrounds. In
contrast to Chairs, the images show true 3D motion and
lighting effects and there is more variety among the object
models.

We tested the two network architectures introduced by
Dosovitskiy et al. [10]: FlowNetS, which is a straightfor-
ward encoder-decoder architecture, and FlowNetC, which
includes explicit correlation of feature maps. We trained
FlowNetS and FlowNetC on Chairs and Things3D and an
equal mixture of samples from both datasets using the dif-
ferent learning rate schedules shown in Figure 3. The basic
schedule S

short

(600k iterations) corresponds to Dosovit-
skiy et al. [10] except some minor changes1. Apart from
this basic schedule S

short

, we investigated a longer sched-
ule S

long

with 1.2M iterations, and a schedule for fine-
tuning S

fine

with smaller learning rates. Results of net-
works trained on Chairs and Things3D with the different
schedules are given in Table 1. The results lead to the fol-
lowing observations:

The order of presenting training data with different
properties matters. Although Things3D is more realistic,
training on Things3D alone leads to worse results than train-
ing on Chairs. The best results are consistently achieved
when first training on Chairs and only then fine-tuning on
Things3D. This schedule also outperforms training on a
mixture of Chairs and Things3D. We conjecture that the
simpler Chairs dataset helps the network learn the general

1(1) We do not start with a learning rate of 1e� 6 and increase it first,
but we start with 1e�4 immediately. (2) We fix the learning rate for 300k
iterations and then divide it by 2 every 100k iterations.
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Figure 3. Learning rate schedules: S
short

is similar to the schedule
in Dosovitskiy et al. [10]. We investigated another longer version
S
long

and a fine-tuning schedule S
fine

.

Architecture Datasets S
short

S
long

S
fine

FlowNetS

Chairs 4.45 - -
Chairs - 4.24 4.21

Things3D - 5.07 4.50
mixed - 4.52 4.10

Chairs!Things3D - 4.24 3.79

FlowNetC Chairs 3.77 - -
Chairs!Things3D - 3.58 3.04

Table 1. Results of training FlowNets with different schedules on
different datasets (one network per row). Numbers indicate end-
point errors on Sintel train clean. mixed denotes an equal mixture
of Chairs and Things3D. Training on Chairs first and fine-tuning
on Things3D yields the best results (the same holds when testing
on the KITTI dataset; see supplemental material). FlowNetC per-
forms better than FlowNetS.

concept of color matching without developing possibly con-
fusing priors for 3D motion and realistic lighting too early.
The result indicates the importance of training data sched-
ules for avoiding shortcuts when learning generic concepts
with deep networks.

FlowNetC outperforms FlowNetS. The result we got
with FlowNetS and S

short

corresponds to the one reported
in Dosovitskiy et al. [10]. However, we obtained much bet-
ter results on FlowNetC. We conclude that Dosovitskiy et
al. [10] did not train FlowNetS and FlowNetC under the
exact same conditions. When done so, the FlowNetC archi-
tecture compares favorably to the FlowNetS architecture.

Improved results. Just by modifying datasets and train-
ing schedules, we improved the FlowNetS result reported
by Dosovitskiy et al. [10] by ⇠ 25% and the FlowNetC re-
sult by ⇠ 30%.

In this section, we did not yet use specialized training
sets for specialized scenarios. The trained network is rather
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Stack Training Warping Warping Loss after EPE on Chairs EPE on Sintel
architecture enabled included gradient test train clean

Net1 Net2 enabled Net1 Net2
Net1 3 – – – 3 – 3.01 3.79
Net1 + Net2 7 3 7 – – 3 2.60 4.29
Net1 + Net2 3 3 7 – 7 3 2.55 4.29
Net1 + Net2 3 3 7 – 3 3 2.38 3.94
Net1 + W + Net2 7 3 3 – – 3 1.94 2.93
Net1 + W + Net2 3 3 3 3 7 3 1.96 3.49
Net1 + W + Net2 3 3 3 3 3 3 1.78 3.33

Table 2. Evaluation of options when stacking two FlowNetS networks (Net1 and Net2). Net1 was trained with the Chairs!Things3D
schedule from Section 3. Net2 is initialized randomly and subsequently, Net1 and Net2 together, or only Net2 is trained on Chairs with
S
long

; see text for details. When training without warping, the stacked network overfits to the Chairs dataset. The best results on Sintel are
obtained when fixing Net1 and training Net2 with warping.

supposed to be generic and to work well in various scenar-
ios. An additional optional component in dataset schedules
is fine-tuning of a generic network to a specific scenario,
such as the driving scenario, which we show in Section 6.

4. Stacking Networks
4.1. Stacking Two Networks for Flow Refinement

All state-of-the-art optical flow approaches rely on itera-
tive methods [7, 31, 21, 2]. Can deep networks also benefit
from iterative refinement? To answer this, we experiment
with stacking multiple FlowNetS and FlowNetC architec-
tures.

The first network in the stack always gets the images I1
and I2 as input. Subsequent networks get I1, I2, and the
previous flow estimate wi = (ui, vi)>, where i denotes the
index of the network in the stack.

To make assessment of the previous error and computing
an incremental update easier for the network, we also op-
tionally warp the second image I2(x, y) via the flow wi and
bilinear interpolation to Ĩ2,i(x, y) = I2(x+ui, y+vi). This
way, the next network in the stack can focus on the remain-
ing increment between I1 and Ĩ2,i. When using warping, we
additionally provide Ĩ2,i and the error ei = ||Ĩ2,i � I1|| as
input to the next network; see Figure 2. Thanks to bilinear
interpolation, the derivatives of the warping operation can
be computed (see supplemental material for details). This
enables training of stacked networks end-to-end.

Table 2 shows the effect of stacking two networks, the
effect of warping, and the effect of end-to-end training.
We take the best FlowNetS from Section 3 and add an-
other FlowNetS on top. The second network is initialized
randomly and then the stack is trained on Chairs with the
schedule S

long

. We experimented with two scenarios: keep-
ing the weights of the first network fixed, or updating them
together with the weights of the second network. In the lat-
ter case, the weights of the first network are fixed for the first

400k iterations to first provide a good initialization of the
second network. We report the error on Sintel train clean
and on the test set of Chairs. Since the Chairs test set is
much more similar to the training data than Sintel, compar-
ing results on both datasets allows us to detect tendencies to
over-fitting.

We make the following observations: (1) Just stacking
networks without warping improves results on Chairs but
decreases performance on Sintel, i.e. the stacked network
is over-fitting. (2) With warping included, stacking always
improves results. (3) Adding an intermediate loss after Net1
is advantageous when training the stacked network end-to-
end. (4) The best results are obtained when keeping the first
network fixed and only training the second network after the
warping operation.

Clearly, since the stacked network is twice as big as the
single network, over-fitting is an issue. The positive effect
of flow refinement after warping can counteract this prob-
lem, yet the best of both is obtained when the stacked net-
works are trained one after the other, since this avoids over-
fitting while having the benefit of flow refinement.

4.2. Stacking Multiple Diverse Networks

Rather than stacking identical networks, it is possible to
stack networks of different type (FlowNetC and FlowNetS).
Reducing the size of the individual networks is another valid
option. We now investigate different combinations and ad-
ditionally also vary the network size.

We call the first network the bootstrap network as it
differs from the second network by its inputs. The sec-
ond network could however be repeated an arbitray num-
ber of times in a recurrent fashion. We conducted this ex-
periment and found that applying a network with the same
weights multiple times and also fine-tuning this recurrent
part does not improve results (see supplemental material for
details). As also done in [17, 9], we therefore add networks
with different weights to the stack. Compared to identical
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Figure 4. Accuracy and runtime of FlowNetS depending on the
network width. The multiplier 1 corresponds to the width of the
original FlowNet architecture. Wider networks do not improve the
accuracy. For fast execution times, a factor of 3

8 is a good choice.
Timings are from an Nvidia GTX 1080.

weights, stacking networks with different weights increases
the memory footprint, but does not increase the runtime. In
this case the top networks are not constrained to a general
improvement of their input, but can perform different tasks
at different stages and the stack can be trained in smaller
pieces by fixing existing networks and adding new networks
one-by-one. We do so by using the Chairs!Things3D
schedule from Section 3 for every new network and the
best configuration with warping from Section 4.1. Further-
more, we experiment with different network sizes and al-
ternatively use FlowNetS or FlowNetC as a bootstrapping
network. We use FlowNetC only in case of the bootstrap
network, as the input to the next network is too diverse to be
properly handeled by the Siamese structure of FlowNetC.
Smaller size versions of the networks were created by tak-
ing only a fraction of the number of channels for every layer
in the network. Figure 4 shows the network accuracy and
runtime for different network sizes of a single FlowNetS.
Factor 3

8 yields a good trade-off between speed and accu-
racy when aiming for faster networks.
Notation: We denote networks trained by the
Chairs!Things3D schedule from Section 3 starting
with FlowNet2. Networks in a stack are trained with
this schedule one-by-one. For the stack configuration we
append upper- or lower-case letters to indicate the original
FlowNet or the thin version with 3

8 of the channels. E.g:
FlowNet2-CSS stands for a network stack consisting of
one FlowNetC and two FlowNetS. FlowNet2-css is the
same but with fewer channels.

Table 3 shows the performance of different network
stacks. Most notably, the final FlowNet2-CSS result im-
proves by ⇠ 30% over the single network FlowNet2-C from
Section 3 and by ⇠ 50% over the original FlowNetC [10].
Furthermore, two small networks in the beginning al-

Number of Networks
1 2 3 4

Architecture s ss sss
Runtime 7ms 14ms 20ms –
EPE 4.55 3.22 3.12
Architecture S SS
Runtime 18ms 37ms – –
EPE 3.79 2.56

Architecture c cs css csss
Runtime 17ms 24ms 31ms 36ms
EPE 3.62 2.65 2.51 2.49
Architecture C CS CSS
Runtime 33ms 51ms 69ms –
EPE 3.04 2.20 2.10

Table 3. Results on Sintel train clean for some variants of stacked
FlowNet architectures following the best practices of Section 3
and Section 4.1. Each new network was first trained on Chairs
with S

long

and then on Things3D with S
fine

(Chairs!Things3D
schedule). Forward pass times are from an Nvidia GTX 1080.

ways outperform one large network, despite being faster
and having fewer weights: FlowNet2-ss (11M weights)
over FlowNet2-S (38M weights), and FlowNet2-cs (11M
weights) over FlowNet2-C (38M weights). Training smaller
units step by step proves to be advantageous and enables
us to train very deep networks for optical flow. At last,
FlowNet2-s provides nearly the same accuracy as the origi-
nal FlowNet [10], while running at 140 frames per second.

5. Small Displacements
5.1. Datasets

While the original FlowNet [10] performed well on the
Sintel benchmark, limitations in real-world applications
have become apparent. In particular, the network cannot
reliably estimate small motions (see Figure 1). This is
counter-intuitive, since small motions are easier for tradi-
tional methods, and there is no obvious reason why net-
works should not reach the same performance in this set-
ting. Thus, we examined the training data and compared it
to the UCF101 dataset [25] as one example of real-world
data. While Chairs are similar to Sintel, UCF101 is funda-
mentally different (we refer to our supplemental material for
the analysis): Sintel is an action movie and as such contains
many fast movements that are difficult for traditional meth-
ods, while the displacements we see in the UCF101 dataset
are much smaller, mostly smaller than 1 pixel. Thus, we
created a dataset in the visual style of Chairs but with very
small displacements and a displacement histogram much
more like UCF101. We also added cases with a background
that is homogeneous or just consists of color gradients. We
call this dataset ChairsSDHom and will release it upon pub-
lication.
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5.2. Small Displacement Network and Fusion

We fine-tuned our FlowNet2-CSS network for smaller
displacements by further training the whole network
stack on a mixture of Things3D and ChairsSDHom
and by applying a non-linearity to the error to down-
weight large displacements2. We denote this network by
FlowNet2-CSS-ft-sd. This increases performance on
small displacements and we found that this particular mix-
ture does not sacrifice performance on large displacements.
However, in case of subpixel motion, noise still remains a
problem and we conjecture that the FlowNet architecture
might in general not be perfect for such motion. Therefore,
we slightly modified the original FlowNetS architecture and
removed the stride 2 in the first layer. We made the begin-
ning of the network deeper by exchanging the 7⇥7 and 5⇥5
kernels in the beginning with multiple 3⇥3 kernels2. Be-
cause noise tends to be a problem with small displacements,
we add convolutions between the upconvolutions to obtain
smoother estimates as in [18]. We denote the resulting ar-
chitecture by FlowNet2-SD; see Figure 2.

Finally, we created a small network that fuses
FlowNet2-CSS-ft-sd and FlowNet2-SD (see Figure 2). The
fusion network receives the flows, the flow magnitudes and
the errors in brightness after warping as input. It contracts
the resolution two times by a factor of 2 and expands again2.
Contrary to the original FlowNet architecture it expands to
the full resolution. We find that this produces crisp motion
boundaries and performs well on small as well as on large
displacements. We denote the final network as FlowNet2.

6. Experiments
We compare the best variants of our network to state-

of-the-art approaches on public bechmarks. In addition, we
provide a comparison on application tasks, such as motion
segmentation and action recognition. This allows bench-
marking the method on real data.

6.1. Speed and Performance on Public Benchmarks

We evaluated all methods3 on a system with an Intel
Xeon E5 with 2.40GHz and an Nvidia GTX 1080. Where
applicable, dataset-specific parameters were used, that yield
best performance. Endpoint errors and runtimes are given
in Table 4.

Sintel: On Sintel, FlowNet2 consistently outperforms
DeepFlow [31] and EpicFlow [21] and is on par with Flow-
Fields. All methods with comparable runtimes have clearly
inferior accuracy. We fine-tuned FlowNet2 on a mixture
of Sintel clean+final training data (FlowNet2–ft-sintel). On
the benchmark, in case of clean data this slightly degraded

2For details we refer to the supplemental material
3An exception is EPPM for which we could not provide the required

Windows environment and use the results from [4].
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Figure 5. Runtime vs. endpoint error comparison to the fastest
existing methods with available code. The FlowNet2 family out-
performs other methods by a large margin. The behaviour for the
KITTI dataset is the same; see supplemental material.

the result, while on final data FlowNet2–ft-sintel is on par
with the currently published state-of-the art method Deep-
DiscreteFlow [13].

KITTI: On KITTI, the results of FlowNet2-CSS are
comparable to EpicFlow [21] and FlowFields [2]. Fine-
tuning on small displacement data degrades the result. This
is probably due to KITTI containing very large displace-
ments in general. Fine-tuning on a combination of the
KITTI2012 and KITTI2015 training sets reduces the error
roughly by a factor of 3 (FlowNet2-ft-kitti). Among non-
stereo methods we obtain the best EPE on KITTI2012 and
the first rank on the KITTI2015 benchmark. This shows
how well and elegantly the learning approach can integrate
the prior of the driving scenario.

Middlebury: On the Middlebury training set FlowNet2
performs comparable to traditional methods. The results on
the Middlebury test set are unexpectedly a lot worse. Still,
there is a large improvement compared to FlowNetS [10].

Endpoint error vs. runtime evaluations for Sintel are
provided in Figure 5. One can observe that the FlowNet2
family outperforms the best and fastest existing methods
by large margins. Depending on the type of application,
a FlowNet2 variant between 8 to 140 frames per second can
be used.

6.2. Qualitative Results

Figures 6 and 7 show example results on Sintel and on
real-world data. While the performance on Sintel is sim-
ilar to FlowFields [2], we can see that on real world data
FlowNet 2.0 clearly has advantages in terms of being robust
to homogeneous regions (rows 2 and 5), image and com-
pression artifacts (rows 3 and 4) and it yields smooth flow
fields with sharp motion boundaries.
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Method Sintel clean Sintel final KITTI 2012 KITTI 2015 Middlebury Runtime
AEE AEE AEE AEE Fl-all Fl-all AEE ms per frame

train test train test train test train train test train test CPU GPU

A
cc

ur
at

e

EpicFlow† [21] 2.27 4.12 3.56 6.29 3.09 3.8 9.27 27.18% 27.10% 0.31 0.39 42,600 –
DeepFlow† [31] 2.66 5.38 3.57 7.21 4.48 5.8 10.63 26.52% 29.18% 0.25 0.42 51,940 –
FlowFields [2] 1.86 3.75 3.06 5.81 3.33 3.5 8.33 24.43% – 0.27 0.33 22,810 –
LDOF (CPU) [7] 4.64 7.56 5.96 9.12 10.94 12.4 18.19 38.11% – 0.44 0.56 64,900 –
LDOF (GPU) [26] 4.76 – 6.32 – 10.43 – 18.20 38.05% – 0.36 – – 6,270
PCA-Layers [32] 3.22 5.73 4.52 7.89 5.99 5.2 12.74 27.26% – 0.66 – 3,300 –

Fa
st

EPPM [4] – 6.49 – 8.38 – 9.2 – – – – 0.33 – 200
PCA-Flow [32] 4.04 6.83 5.18 8.65 5.48 6.2 14.01 39.59% – 0.70 – 140 –
DIS-Fast [15] 5.61 9.35 6.31 10.13 11.01 14.4 21.20 53.73% – 0.92 – 70 –
FlowNetS [10] 4.50 6.96‡ 5.45 7.52‡ 8.26 – – – – 1.09 – – 18
FlowNetC [10] 4.31 6.85‡ 5.87 8.51‡ 9.35 – – – – 1.15 – – 32

Fl
ow

N
et

2.
0

FlowNet2-s 4.55 – 5.21 – 8.89 – 16.42 56.81% – 1.27 – – 7
FlowNet2-ss 3.22 – 3.85 – 5.45 – 12.84 41.03% – 0.68 – – 14
FlowNet2-css 2.51 – 3.54 – 4.49 – 11.01 35.19% – 0.54 – – 31
FlowNet2-css-ft-sd 2.50 – 3.50 – 4.71 – 11.18 34.10% – 0.43 – – 31
FlowNet2-CSS 2.10 – 3.23 – 3.55 – 8.94 29.77% – 0.44 – – 69
FlowNet2-CSS-ft-sd 2.08 – 3.17 – 4.05 – 10.07 30.73% – 0.38 – – 69
FlowNet2 2.02 3.96 3.14 6.02 4.09 – 10.06 30.37% – 0.35 0.52 – 123
FlowNet2-ft-sintel (1.45) 4.16 (2.01) 5.74 3.61 – 9.84 28.20% – 0.35 – – 123
FlowNet2-ft-kitti 3.43 – 4.66 – (1.28) 1.8 (2.30) (8.61%) 11.48% 0.56 – – 123

Table 4. Performance comparison on public benchmarks. AEE: Average Endpoint Error; Fl-all: Ratio of pixels where flow estimate is
wrong by both � 3 pixels and � 5%. The best number for each category is highlighted in bold. See text for details. †train numbers for
these methods use slower but better "improved" option. ‡For these results we report the fine-tuned numbers (FlowNetS-ft and FlowNetC-ft).

Image Overlay Ground Truth FlowFields [2] PCA-Flow [32] FlowNetS [10] FlowNet2
(22,810ms) (140ms) (18ms) (123ms)

Figure 6. Examples of flow fields from different methods estimated on Sintel. FlowNet2 performs similar to FlowFields and is able to
extract fine details, while methods running at comparable speeds perform much worse (PCA-Flow and FlowNetS).

6.3. Performance on Motion Segmentation and Ac-
tion Recognition

To assess performance of FlowNet 2.0 in real-world ap-
plications, we compare the performance of action recogni-
tion and motion segmentation. For both applications, good
optical flow is key. Thus, a good performance on these tasks
also serves as an indicator for good optical flow.

For motion segmentation, we rely on the well-
established approach of Ochs et al. [19] to compute long

term point trajectories. A motion segmentation is obtained
from these using the state-of-the-art method from Keuper et
al. [14]. The results are shown in Table 5. The original
model in Ochs et al. [14] was built on Large Displacement
Optical Flow [7]. We included also other popular optical
flow methods in the comparison. The old FlowNet [10]
was not useful for motion segmentation. In contrast, the
FlowNet2 is as reliable as other state-of-the-art methods
while being orders of magnitude faster.
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Image Overlay FlowFields [2] DeepFlow [31] LDOF (GPU) [26] PCA-Flow [32] FlowNetS [10] FlowNet2

Figure 7. Examples of flow fields from different methods estimated on real-world data. The top two rows are from the Middlebury data
set and the bottom three from UCF101. Note how well FlowNet2 generalizes to real-world data, i.e. it produces smooth flow fields, crisp
boundaries and is robust to motion blur and compression artifacts. Given timings of methods differ due to different image resolutions.

Optical flow is also a crucial feature for action recog-
nition. To assess the performance, we trained the tempo-
ral stream of the two-stream approach from Simonyan et
al. [24] with different optical flow inputs. Table 5 shows
that FlowNetS [10] did not provide useful results, while the
flow from FlowNet 2.0 yields comparable results to state-
of-the art methods.

7. Conclusions
We have presented several improvements to the FlowNet

idea that have led to accuracy that is fully on par with state-
of-the-art methods while FlowNet 2.0 runs orders of magni-
tude faster. We have quantified the effect of each contribu-
tion and showed that all play an important role. The experi-
ments on motion segmentation and action recognition show
that the estimated optical flow with FlowNet 2.0 is reliable
on a large variety of scenes and applications. The FlowNet
2.0 family provides networks running at speeds from 8 to
140fps. This further extends the possible range of applica-
tions. While the results on Middlebury indicate imperfect
performance on subpixel motion, FlowNet 2.0 results high-
light very crisp motion boundaries, retrieval of fine struc-
tures, and robustness to compression artifacts. Thus, we
expect it to become the working horse for all applications
that require accurate and fast optical flow computation.

Motion Seg. Action Recog.
F-Measure Extracted Accuracy

Objects
LDOF-CPU [7] 79.51% 28/65 79.91%†

DeepFlow [31] 80.18% 29/65 81.89%
EpicFlow [21] 78.36% 27/65 78.90%
FlowFields [2] 79.70% 30/65 –
FlowNetS [10] 56.87%‡ 3/62‡ 55.27%
FlowNet2-css-ft-sd 77.88% 26/65 –
FlowNet2-CSS-ft-sd 79.52% 30/65 79.64%
FlowNet2 79.92% 32/65 79.51%

Table 5. Motion segmentation and action recognition using differ-
ent methods; see text for details. Motion Segmentation: We re-
port results using [19, 14] on the training set of FBMS-59 [27, 19]
with a density of 4 pixels. Different densities and error measures
are given the supplemental material. “Extracted objects” refers to
objects with F � 75%. ‡FlowNetS is evaluated on 28 out of 29
sequences; on the sequence lion02, the optimization did not con-
verge even after one week. Action Recognition: We report classi-
fication accuracies after training the temporal stream of [24]. We
use a stack of 5 optical flow fields as input. Due to long training
times only selected methods could be evaluated. †To reproduce re-
sults from [24], for action recognition we use the OpenCV LDOF
implementation. Note the generally large difference for FlowNetS
and FlowNet2 and the performance compared to traditional meth-
ods.
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