
IST – 688007 – TrimBot2020 Deliverable D2.6

TrimBot2020 Deliverable D2.6

Final Manipulator, tools and algorithms

Principal Author: Wageningen University (WU) &
Wageningen Research (WR)

Contributors: A.-Ludwigs-Univ. Freiburg (ALUF)
University of Edinburgh (UEDIN)

Dissemination: CO

Abstract. This report describes the final design of the robotic
manipulator, the end-effectors for bush trimming and rose cutting, as well as
the vision modules and control components for closed-loop bush trimming
and rose clipping. In the final robotic manipulator a spherical wrist was used
that allowed easier and faster trajectory planning. To increase the accuracy
of the manipulator several adaptations have been made to its control, such
as using higher limits for the motor control currents and adapted PID
control values. A controller to do trimmming of flat horizontal planes
was implemented and the arm behaviour was adjusted to avoid the cables
wrapping around the arm. In the final bush trimming tool the upper blade
was made stationary to improve cutting performance. No design changes
were made in the mechanical design of the rose clipping end-effector. The
vision algorithm for rose clipping was adapted to the real outdoor case. The
final bush trimming motion planning method makes use of a trajectories
knowledge base and exploits the trimming result for closed loop operation.
The approach for rose clipping motion planning is visual servoing, similar to
Demonstrator 2. Finally, the control of the total system (the state machine)
and where relevant, specific properties of the arm control used therein is
described.

Deliverable due: Month 36

Version 1.1; 2019–12–03 Page 1 of 24 c© TrimBot2020 Consortium, 2019

Ref. Ares(2019)7467894 - 04/12/2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Contents

1 Introduction 3

2 Final manipulator 4

2.1 Manipulator selection . 4

2.2 Control improvement . 7

2.3 Trimming motion execution . 7

2.4 Proposed future improvements . 8

3 Trimming tools 10

3.1 Bush trimming end-effector . 10

3.1.1 Design changes . 10

3.1.2 Ideas for future improvements . 11

3.2 Rose clipping end-effector . 11

4 Vision modules 14

4.1 Bush trimming vision algorithm . 14

4.2 Rose clipping vision algorithm . 14

4.3 Hand-eye calibration . 15

5 Motion planning 16

5.1 Bush trimming motion planning . 16

5.1.1 Use of trajectories knowledge base . 16

5.1.2 Trimming outcome extraction . 17

5.1.3 Further updates . 17

5.2 Rose clipping motion planning . 18

6 System control and arm control for bush trimming 20

6.1 Trimming State Machine . 20

6.1.1 Bush approaching . 21

6.1.2 Single-pose trimming state machine 21

6.1.3 Multi-pose trimming state machine 22

6.1.4 Top trimming . 22

6.2 Visual servo for rose cutting . 23

Version 1.1; 2019–12–03 Page 2 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

1 Introduction

Based on the results of Deliverables 2.4 and 2.5, and testing of the system that was used there
and for Demonstrator (Deliverable 7.6), several modifications to the manipulator, tools and
algorithms were proposed. This deliverable describes the final design of the manipulator, the
end-effectors for bush trimming and rose cutting, as well as the vision modules and control
components for closed-loop bush trimming and rose clipping. Details are given on the modifi-
cations that were carried out with respect to the V2 system described in Deliverable 2.4. The
integration process itself is described in Deliverable 6.4, while Deliverable 7.7 summarizes the
demonstration results.

The final evaluation and found performance for this system will be described in Deliverable 2.7.

Version 1.1; 2019–12–03 Page 3 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

2 Final manipulator

2.1 Manipulator selection

Based on evaluation of the arm capabilities and trimming performance during the testing on the
static rig (as described in Deliverable 2.5 and Demonstrator 2 / Deliverable 7.6), it was observed
that the curved wrist of the robotic arm sometimes poses challenges in motion planning and
control. As the option of using a spherical wrist on the Kinova Jaco2 arm also emerged, this
was evaluated and found to offer the following benefits:

• Using a spherical wrist allows for analytically solving the inverse kinematics (IK) prob-
lem in the trajectory planning. As previously an approximation was used, this is expected
to result in better trajectories with faster calculations.

• A spherical wrist offers better options to place the tool in a desired orientation, such that
trimming accuracy might be improved.

• The resulting trajectory might be executed in less time, as fewer (time-consuming) retrac-
tions are needed to avoid arm singularities.

Figure 1: Kinova Jaco2 configurations with curved wrist (left) and spherical wrist (right).

Next, this was also tested by using a simulation of both the curved wrist and spherical arm type
in path planning, and comparing the results, as shown in Figures 4 and 5. Here, it can be seen
that planning and execution time are clearly lower for the spherical wrist (red) compared to the
curved wrist (blue). Also the number of retractions was lower, resulting in a higher cutting time
ratio (time spent cutting divided by total execution time) and thus a more efficient trimming
path.

As result, a spherical wrist module was ordered and implemented for bush trimming. Testing
the spherical writst configuration indeed proved to be beneficial for planning and trimming,

Version 1.1; 2019–12–03 Page 4 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 2: Earlier versions of the robot with curved wrist manipulator. Rose clipper configuration
(left) and bush trimmer configuration (right).

Figure 3: Final versions of the robot with spherical wrist manipulator. Rose clipper
configuration (left) and bush trimmer configuration (right).

although the expected time difference could not be observed due to other changes made in the
planning setup. Seeing the benefits of a spherical arm for topiary trimming, also its use for
rose clipping was considered. As similar benefits could be expected also for this case, and to
ensure easier switching between the arms used for trimming and clipping, it was decided to
also change this arm. Thus, for the final demonstrator of bush trimming and rose cutting the
spherical version of the Kinova Jaco2 arm was selected. For reference the earlier curved wrist
versions of the Trimbot are shown in Figure 2.The final versions of the robot with spherical
wrist are shown in Figure 3.

Version 1.1; 2019–12–03 Page 5 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 4: Performance comparison of the spherical wrist Jaco (red) and the curved wrist Jaco
(blue) for a simulated sphere trimming task. The target sphere has a 33cm diameter, and its
center is alternatively located on several positions on a grid (all referred to the arm base frame).
In these tests the y coordinate is always -0.64m, whereas the x and z coordinates vary. The
coordinate values (in meters) used in the trials are shown on the lower plane of the plot. Up:
Planning setup runtime (including IK querying). Down: Trajectory execution time.

Version 1.1; 2019–12–03 Page 6 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

2.2 Control improvement

After selecting the version of the arm to be used, several adaptations had to be made to the arm
control software.

First, the relatively large weight of the bush cutting tool (1.5kg) in relation to the specified
arm payload (2.2kg peak at full reach) directly affected arm motion performance. This was
especially observed in the form of jerky motions and low control accuracy at extended arm
reach, caused by the arm firmware limiting the control currents. Such limitation was origi-
nally implemented by Kinova for the arm as a whole to avoid damage to the motors due to
overloading, but turned out to be limiting for this application. Since torques and currents for
the individual motors remained within specification, we implemented an automatic disabling of
this current limiter to have the arm execute its motions as desired.

Second, in previous experiments (described in Deliverable 2.4) the arm was found to have
some control inaccuracy, especially in the z-direction and likely caused by insufficient gravity
compensation. Initially this was resolved by using a lookup table to correct for this error, but
the switch to a different arm configuration would at least require an update of this approach.
Instead, it was chosen to directly compensate for the gravity effects by updating the parameters
of the PID control used in the arm. For this, the I-term in the control for joints 2 and 3, that
had the largest contribution to the Tool Center Point (TCP) error, was set to 2 instead of 0. As
result, TCP error in z-direction reduced from 15-20mm to 1-3mm max during execution of a
cartesian path in the x,y plane. In this, largest errors were observed when arm motions changed
direction, causing a small drop in z-direction. When executing a straight path XTE were found
to be ¡ 1 mm in x,y direction.

To allow testing of the arm in simulation, it was decided to switch to a different arm controller.
Although now implemented by using the official Kinova ROS packages, its technical basis is
still the same as the previously used WPI-controller, where a time-interpolated trajectory
is created for execution by the arm. Also here, PID values for this controller were tuned
to achieve suitable TCP positioning accuracy. Values were set to 150, 0 and 0 (with likely
internal scaling in the controller). The errorNorm, summed over all joints and indicating if
a goal pose was reached or not, was set to 0.001 radians. Arm speed was found to affect
control accuracy, with a mean error on the final TCP pose of 3.9mm (SD = 1.9mm) using
an arm speed of 0.3 radians/second and 2.6mm (SD = 1.1mm) using an arm speed of 0.15
radians/second. Peak errors ranged between 8 and 12 mm for the fast motion, and between 6
and 10 mm for the slow one. Such accuracy was considered sufficient for further testing of
the bush trimming systems. Furthermore, some smaller updates to the control strategy were
made. First, a basic controller to do trimming of flat horizontal planes was implemented on
top of the original cartesian_move command from the Kinova packages. Second, arm
behaviour was adjusted to avoid cable rolling around the arm. For this, after each motion, the
arm returned in a reversed motion to its home position, thereby unrolling the cable.

2.3 Trimming motion execution

The planned manipulator trajectory with trimmer speed information is sent as a goal to a ROS
action server implemented on top of the Kinova ROS driver. The action server exploits the

Version 1.1; 2019–12–03 Page 7 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Kinova API to send speed commands based on a PID controller, and as input for the error
calculation it systematically uses the configuration that should have been reached by the arm at
the current time instant. This is computed according to a time-sampled version of the submitted
trajectory plan that uses quintic splines and constraints on peak speed and acceleration.

2.4 Proposed future improvements

With these modifications, the final manipulator for integration on the mobile platform was
defined. Still, several elements could be addressed for future improvements. These were:

• Reduce the arm load, to improve control performance and lower the risk of arm failure
due to overloading.

• Implement more extensive status-checking in the system, to ensure arm loads and usage
always remain within safe limits, and adjust control if this is required. This system should
also monitor and prevent arm-overheating to prevent arm breakdown.

• Implement a more extensive collision checking in the arm control, that also takes into
account vehicle properties and ensures no self-collision in the system will occur to avoid
arm damage.

Version 1.1; 2019–12–03 Page 8 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 5: Performance comparison of the spherical wrist Jaco (red) and the curved wrist Jaco
(blue) for a simulated sphere trimming task. The target sphere has a 33cm diameter, and its
center is alternatively located on several positions on a grid (all referred to the arm base frame).
In these tests the y coordinate is always -0.64m, whereas the x and z coordinates vary. The
coordinate values (in meters) used in the trials are shown on the lower plane of the plot. Up:
Number of retractions. Down: Cutting time ratio (i.e. ratio between the time spent cutting and
the whole execution time).

Version 1.1; 2019–12–03 Page 9 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

3 Trimming tools

3.1 Bush trimming end-effector

3.1.1 Design changes

Field experiments with the bush trimming end-effector as described in Deliverable 2.5 revealed
a shortcoming of the design. The end-effector had two counter rotating blades, with a sharp
front blade and a blunt rear blade (see Figure 6). The rear blade has an arrowhead, which
prevents a branch from being pushed out from between the blades whilst being cut. However,
at the moment of entrance (before the branch passes the hook point), the branch encounters two
angled edges which drives the branch out of the cutting unit. This results in a situation where
some branches are pushed away all the time and being led around the perimeter of the blades.
Furthermore, both the blade and the entry guide had the same number of fingers (see Figure 7
(left)). As result, all fingers will cut at the same time, thus creating a peak load on the drive
system.

Figure 6: Bush cutter design as described in Deliverable 2.5.

In order to improve the cutting performance, the rear blade was made stationary. In this way,
the rear blade can be seen as an entry guide instead of a blade. The entry guide also got two
other changes. The arrowhead of the entry guide was made smaller and additional hook points
were added to ensure all branches are caught. Also, the number of fingers was increased from
10 to 12. This results in an unequal number of fingers between the cutting blade and the entry
guide, resulting in a more evenly distributed load for the end-effector (Figure 7 (right)).

In Deliverable 2.4, it was also indicated that to reduce the weight of the end effector, the drive
motor would be placed on the 4th axis of the arm. To drive the cutter head, a flexible drive shaft
would be used. As described in Deliverable 2.5 this design was tested but failed. It was decided
to revert the design to the previous stage, in which the cutter head was driven directly by the
motor. The resulting final design is shown in Figure 8. A photo of the final version is shown in
Figure 9.

Version 1.1; 2019–12–03 Page 10 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 7: Left: Equal number of fingers (10) for blade and entry guide. Every blade tip reaches
the entry guide at the same moment, resulting in higher peak loads ; Right: Blade with 10
fingers and entry guide with 12 fingers. This results in lower peak loads because not all blade
tips reach the entry guide at the same time.

Evaluating trimming performance of the new design showed that it provided a better cutting
result with less missed branches. Therefore it was decided to keep this configuration for the
final demonstrator and bush trimming experiments.

3.1.2 Ideas for future improvements

The changes of the design lead to new possibilities for more improvements of the end-effector
design. Due to the limited time between the presentation of Demonstrator 2 (February 2019)
and Demonstrator 3 (September 2019), these have not yet been integrated in the design. Since
the new design only needs one rotating blade (instead of two), the whole construction can
be simplified. A new motor and gearbox arrangement could result in a more compact and
lightweight end-effector, which would also benefit arm control. Another point of improvement
is cable guidance. The cables are placed in a cable carrier along the robotic arm. This limits the
freedom of the arm and can block the view of the navigation cameras. For a future design, the
freedom of rotation of the robotic arm should be limited (maximum +/- 180 degrees for each
joint) or a robotic arm with integrated power (and data) supply must be chosen.

3.2 Rose clipping end-effector

The design of the rose clipping end-effector was not subject to changes since Deliverable 2.4.
In the control software, only minor changes were made to have a more reliable sensor readout
and avoid undesired tool motions.

A photo of the final version of the rose clipping end-effector is shown in Figure 10.

Version 1.1; 2019–12–03 Page 11 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 8: CAD drawing of the final design of the bush trimming end-effector. The major change
in this design is that only the lower blade is rotating below a stationary entry guide.

Figure 9: Photo of the final version of the bush trimming end-effector.

Version 1.1; 2019–12–03 Page 12 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 10: Photo of the final version of the rose clipping end-effector.

Version 1.1; 2019–12–03 Page 13 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

4 Vision modules

This section describes the vision modules that take raw visual perception data and use this to
generate a target object for the bush trimming planning module. Specifically, these modules
(separate for bush and rose) provide information about where the object-to-be-cut is located;
the planning module then takes care of how this cutting is done.

4.1 Bush trimming vision algorithm

The bush trimming vision module operates after the robot platform has navigated to a trimming
target and stabilized its own position. This module’s tasks are to (a) perceive the 3D environ-
ment around the target bush, (b) identify the target and (c) produce a target shape which is sent
to the arm motion planning module for further processing. The target shape is parameterized as
a fine triangle mesh.

The bush trimming vision algorithm was already extensively described in Deliverable 2.4. For
more details, the reader is referred to there.

The improvement brought by multi-view data collection is discussed in Deliverable 2.5 and [2].
Details on the depth sensing and shape-fitting method can also be found in [2].

4.2 Rose clipping vision algorithm

The goal of the rose clipping vision module is to detect clipping site locations relative to
the robot. This is obtained by scanning the bush from a set of predefined positions with a
stereo camera mounted on the arm. Subsequently, the image is segmented and the regions
corresponding to branches are extracted in the form of a point cloud. Finally, clipping sites on
branches are detected based on height from the ground and local branching situation (Figure 11).
The algorithm is described in detail in Deliverable 5.4 - Clipping site recognition software.

Simultaneously, an algorithm was developed to detect buds on stems, which could allow for a
more precise site localisation, based on the gardener’s rule of cutting above buds. While the
results on previous datasets look promising, in practice we found that it is difficult to make it
work reliably in the integrated system. The reasons for this are two-fold. First, the resolution of
the cameras was not sufficient to capture buds during the bush scan (from ca. 40 cm). The buds
could be detected only when they are 20 cm or closer from the camera. Second, the occlusion
from leaves prevented seeing the buds at all in many cases, even at close distance. This was
particularly problematic during the season before final project demonstration (September), as
most buds grow into leaves or small branches during summer, and only few remain dormant
and detectable.

Compared to Demonstrator 2, which was based on detection of red tags on branches, the
changes in the vision algorithm involved adaptation to the real outdoor case. An important
step was to include the branch segmentation, which allows to remove leaves from the plant
model. This allowed analysing the branch topology to get good clipping sites even without the
bud detector.

Version 1.1; 2019–12–03 Page 14 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Figure 11: Rose clipping site detection. One image from the bush scan set (left) and
corresponding detected clipping sites (red) on the segmented pointcloud of the bush (right).

4.3 Hand-eye calibration

The hand-eye calibration for the cameras mounted on top of the trimming tools was already
described in detail in Deliverable 2.5. One drawback of that procedure was that it required
many manual steps, such as manually recording of the robot poses. For the final system a
ROS node was written that performs all steps needed automatically. A master launch file starts
the camera driver, robot arm driver and the Halcon hand eye calibation script (implemented
using the HDevEngine of Halcon). After initialization the arm moves along a fixed list of
waypoints to record images of a calibration pattern from different poses. The recorded images
are transferred to Halcon (using the asr_halcon_bridge1). With each acquired image
the reached robot pose is communicated to Halcon as well. After collecting a configurable
number of images (typically 15 to 20) the movement of the arm is stopped and the hand-
eye calibration calculation is carried out. The result and the error measures are displayed
on screen and are stored in a result file. For convenience also a yaml file is generated that
contains the ROS parameters arm2cam_rotation_euler_static_xyz and the
arm2cam_translation_xyz. This data can directly be used by the Trimbot shape
fitting nodes.

1http://wiki.ros.org/asr halcon bridge

Version 1.1; 2019–12–03 Page 15 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

5 Motion planning

Motion planning is described separately for bush and rose trimming, as both tasks used different
planning approaches. The description here is based upon previous deliverables, and indicates
the modifications that were made to build the final planning system.

5.1 Bush trimming motion planning

5.1.1 Use of trajectories knowledge base

A detailed description of the procedure outlined in this paragraph is provided in [3]. The
algorithm is based on discretizing the reachable target area into a set of desired tool poses, and
the path used to traverse them is computed by approximately solving a Generalized Travelling
Salesmen Problem (GTSP) over a graph whose nodes are multiple IK solutions for each target
tool pose, and whose edges are weighted with a custom objective function encoding motion
easiness. The major shortcoming of the algorithm is the fact that it is computationally expensive,
as it needs to compare a very high number of solutions in order to find a convenient coverage
schedule.

In the following the word scenario will be used to refer to a specific combination of the shape,
position in the robot frame and dimensions of a given target mesh. Storing a working GTSP
solution found by the algorithm allows to re-use it in the same scenario multiple times without
any computation. If a scenario is lightly perturbed with respect to the one used to generate a
solution, the optimal traversal order is expected to be essentially the same, only the actual arm
configurations will be slightly different to match the new target poses. This observation leads to
the idea of precomputing a database of coverage trajectories by submitting to the GTSP-based
planner a grid of size/position instances for each shape of interest.

When a target mesh is acquired, the coverage trajectory corresponding to the closest scenario
in the database is retrieved, which is defined as the one whose size and position in x-, y- and
z-dimension are the closest to target mesh.

Mathematically, this can be defined as: Given the center coordinates of the target object with
respect to the robot base xcur, ycur, zcur, the size of the target object scur (alternatively defined as
the diameter or edge), and the xdb,i, ydb, j, zdb,k, sdb,l for all i = 1, ..,NX , j = 1, ..,NY , z = 1, ..,NZ ,
l = 1, ..,NS present in the database, the closest scenario is defined as the one having as target
the same type of shape that is required in the given trimming task, and whose indices ibest , jbest ,
kbest , lbest are defined as follows:

ibest = argmin
i=1,...,NX

|xcur− xdb,i|

jbest = argmin
j=1,...,NY

|ycur− ydb, j|

kbest = argmin
k=1,...,NZ

|zcur− zdb,k|

lbest = argmin
l=1,...,NS

|scur− sdb,l|

(1)

Version 1.1; 2019–12–03 Page 16 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

Next, the intermediate configurations involved in the trimming task are adapted according to
the following rule:

qnew =

{
q+ J(q)†(pnew− p) if κ(J(q))< κMAX

q elsewhere
(2)

where J(q) is the geometric Jacobian of the robot at configuration q, κ(J(q)) is the condition
number of the matrix and κMAX is a threshold value after which the matrix is regarded as ill-
conditioned. Since inverting an ill-conditioned Jacobian in the given equation would lead to
a very large configuration displacement, in these cases it is preferred to exploit the unchanged
value of q in the stored trajectory. Since this event does not happen frequently, and given
that the database has been generated with a resolution of 2cm along all dimensions, the error
introduced by such a policy is expected to be negligible. For each arm configuration in the
planned trajectory, also the desired trimmer speed for this trajectory slice is stored.

5.1.2 Trimming outcome extraction

Before and after the execution of each trimming motion, the bush pointcloud acquired by the
stereo camera from the home configuration viewpoint is stored and used to initialize an octree
structure. The two structures are compared in order to find the leaf nodes in the second octree
that were not present in the first one. This, in turn, allows reconstructing the point indices i in
the second pointcloud that changed with respect to the initial pointcloud. These are interpreted
as the points on the trimmed bush where cutting took place, and their signed distance ρi from
the target mesh is computed.

In order to make the procedure rigorous, the same scanning trajectory used during the target
fitting process should be used each time the trimmed bush pointcloud is acquired. This would
guarantee to consistently gather information about all points affected by trimming. However,
such procedure turned out to be too time-intensive, and using a single view for this comparison
turned out to be reliable in most circumstances.

The acquired information about the difference points is exploited in the trimming state machine
to trigger trimming motion repetitions (see Section 6.1).

5.1.3 Further updates

The following additional modifications were applied to the coverage trajectory planning routine:

1. A strict constraint was added for direction of motion, so the arm is no longer allowed to
go downwards during cutting. Only horizontal and upward directions are allowed, which
is expected to improve trimming effectiveness;

Version 1.1; 2019–12–03 Page 17 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

2. Angular motions are restricted within the 0−2π range, so the joint does not try to rotate
above 2π to reach angles close to zero. As result, all motions stay within a safe window,
and no cable rolling takes place;

3. Mesh triangles affected by cutting are published. They are meant be used by the fitting
module, so that it is aware about already impacted areas when fitting a partially trimmed
plant.

5.2 Rose clipping motion planning

The approach for motion planning is visual servoing to continouosly updated the targets de-
tected by the arm camera, similar to Demonstrator 2. In this section we detail how the goals are
set and updated.

The arm navigates to detected and stored clipping sites starting with the closest cutting point
and ending with the farthest one. While it navigates to the current cutting goal ~Pgoal , the
visual servoing looks for new cutting point candidates ~Pcan in a neighborhood of radius 1.5 cm
around ~Pgoal . If there is any cutting point candidate in this radius, the goal gets updated using
a convex combination (3) between the current goal position and the new goal. The convex
combination is weighted by a “blending” factor α ∈ (0,1] with α = 0.1 in our implementation.
This combination guarantees a smoother update of ~Pgoal by avoiding fast changes in position
between consecutive times (t, t + 1), where ~Pgoal(t + 1) is the new goal and ~Pgoal(t) is the
current goal.

~Pgoal(t + 1) = α~Pcan(t)+ (1−α)~Pgoal(t) (3)

The neighbors of the cutting goal are found by running a process in parallel which captures the
position of the arm and pointcloud at the current time t, and outputs the positions of the cutting
points on the scene using the methods from Deliverable 5.4 (stem detection, pointcloud post-
processing, cutting points localization). This process can be better appreciated in Figure 12.

Version 1.1; 2019–12–03 Page 18 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

E. Visual Servoing

Start

A. Scanning Pgoal=next target

Cut

C. Pointcloud
post-processing

D. Cutting point
localization

 at height ≈ h

Store
clipping sites

cutting points
pipeline

dist(tool, Pgoal)
< 0.1 cm

dist(Pgoal, Pcan)
< 1.5 cm

Pcan

yes no

update Pgoal

yes
no

cut. points
pipeline

B. Branch
detection

End
No next

target

Real-time
data

streaming

Figure 12: A scheme of the pipeline for rose clipping.

Version 1.1; 2019–12–03 Page 19 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

6 System control and arm control for bush trimming

This section describes the control of the total system (the state machine) and where relevant,
specific properties of the arm control used therein. The flowchart of the trimming pipeline is
shown in Figure 13, starting from the lower-left.

Start

Approach
bush

Servo to first
trimming pose

Target
shape

Fitted
mesh

Plan trajectory
Get trajectory
from database

and warp it

TrajectoryVehicle
poses

XOR

Select planning
method

More trajectory
segments?

Move to
parking pose

Select trimming
segment

More poses
around

the bush?

No

No

End

Execute
trimming
segment

More repetitions
allowed?

Yes

No

Evaluate
trimming

Yes

Trimming result
within threshold?

No Yes

Servo to next
trimming pose

Yes

Scan bush and
fit shape

Figure 13: Flowchart of the multi-side trimming pipeline. The process starts lower-left, goes
via approaching, scanning and trimming towards the next pose or finish if no poses are left.

6.1 Trimming State Machine

The state machine for the trimming task execution is implemented in ROS FlexBE, and includes
various steps from approaching and navigating around the bush up to the actual trimming.

Version 1.1; 2019–12–03 Page 20 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

The various steps used in this are explained below, starting from “approach bush”, through
“scanning”, via “trimming” up to “evaluation” and “navigate to next pose”. Furthermore, the
state machine contained a special state for handling system errors, such that in case of failure
the user could indicate to the system what its next action should be: stopping, repeating an
operation, or stepping over to another part of the state machine.

6.1.1 Bush approaching

The whole trimming control, including approaching of the bush, starts on a pose about 1 to
2 meters away from the bush, with the robot arriving there by using its garden navigation
capabilities. At this moment, the robot switches over to local control for servoing to the bush,
as detailed in Deliverable 1.3. Visual servoing is used in a two-step approach: the robot moves
forward until it is about 1.5m from the plant, then it turns to have the bush by the right side
within the trimming distance of 0.8 m from the bush center (about 0.65m from the bush surface).

6.1.2 Single-pose trimming state machine

After the platform has reached the location at which trimming should be performed, it switches
from the general state machine controlling the platform to the state machine that controls the
trimming pipeline. At the beginning of the trimming pipeline, the arm moves to a default home
configuration, after which it enables the Dispnet and the shape fitting node. At this point the
scanning trajectory is executed, and the most recent fitted mesh is continuously published on
a ROS topic. At the end of the scanning state, a request is sent to the planning node. The
planning node reads the latest published message on the fitted mesh topic and uses it as input
to calculate a trimming trajectory. Depending on the received mesh, it will either use a pre-
calculated trajectory from the database and warp it to match the bush (as decribed in Section
5.1.1) or plan a new trajectory using the planner. After calculating, it returns the trimming
trajectory, together with the indices of the trimming segments in the trajectory and the list of
the expected future platform locations around the bush, expressed as angle increments around
the bush object starting from its current position. If the current location is the first pose at this
bush, the state machine is initialized with an dummy list object, and this newly calculated list
is used. If the input list of angles was an actual list object, then this list (which was received at
the start) is used as the output list of the state machine after removing the current location.

At this point, for each trimming segment in the planned trajectory the following procedure is
followed:

1. The initial bush pointcloud is stored;

2. The arm executes the trimming trajectory segment;

3. The post-trimming bush pointcloud is retrieved;

4. The difference points are computed, as well as their signed distance ρi with respect to the
target mesh, as defined in Section 5.1.2;

Version 1.1; 2019–12–03 Page 21 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

5. The trajectory repetition counter cnt (initialized to 1) is checked:

• if cnt is lower than a predefined attempts limit (2 in the implementation), the
following quantity is computed

δ =
∑

NP
i=1 ρi[ρi > 0]

∑
NP
i=1 1[ρi > 0]

(4)

δ is the average distance of the outer difference points (i.e. the ones whose signed
distance ρi from the target mesh is above zero).

– if δ is higher than a threshold (1cm in the implementation), then a repetition of
the trimming trajectory segment is triggered, and cnt is increased by 1;

– otherwise, the next trimming segment is processed (and cnt is set to 1).

• otherwise, the next trimming segment is processed (and cnt is set to 1).

Once the trajectory execution is completed, the shapefitting node and the Dispnet node are
disabled, and the arm is moved to a predefined parking configuration that is convenient when
the platform is driving. At this point the control is passed back to the outer state machine, to
handle moving of the platform.

6.1.3 Multi-pose trimming state machine

Using the list of target trimming poses as provided by the planning node, the following proce-
dure is then executed to move to the next trimming location, as long as the target angle list is
not empty:

1. The first angle in the list is read and removed from the list;

2. Visual servoing is used to perform a circular motion attempting to position the robot at
the required angle around the plant and at the correct distance;

3. Control is given to the bush trimming state machine with the reduced list of angles as
input.

Visual servoing is described in more detail in Deliverable 1.3, while the description of the bush
trimming state machine was given in section 6.1.2.

6.1.4 Top trimming

When handling the last pose at the bush (pose 5 in the implementation), the platform will move
closer to the bush, to ensure that also the top of the bush can be reached and is properly trimmed.
For this, the trajectory planner settings are adjusted such that only the patches whose normal
vector is close to vertical are considered in planning. Aside from this, the behaviour of system
for this pose is the same as described before.

Version 1.1; 2019–12–03 Page 22 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

6.2 Visual servo for rose cutting

The major improvement compared to Demonstrator 2 is in the controller, which was changed
from position to velocity control. This allowed getting a smooth motion of the end effector when
approaching a moving clipping site on a branch. The scanning and homing motions however
still use position control, because the target positions are static.

The navigation of the arm, from the start position to a cutting point, is performed using propor-
tional velocity control (Equation (5)). ROS MoveIt! software [1] is used to find the inverse of
the Jacobian J† to obtain the joint difference ∆q from the distance ∆X ; the ∆X is the distance
between the end-effector of the robot and the target ~Pgoal . For the approach, a proportional
controller is enough to have a smooth trajectory:

q̇ = K∆q (5)

∆q = J†∆X (6)

The proportional value K is not a constant but a dynamic value that changes based on ∆X
because the robot should “decelerate” when it gets close to the cutting location and should
increase the velocity when the end-effector is far from the target. However, in practice, it is not
desirable that only the distance between the end-effector and the target controls the value of K,
specially because if ∆X is big, q̇ will have an undesirable high speed. Thus, a maximum velocity
must be set to avoid this. Similarly, a lower bound is set to avoid the velocity becoming 0 when
the end-effector gets really close to the target stem. The velocity of a joint qi is calculated as
follows:

q̇i =

10[deg

s] if K∆qi > 10[deg
s]

3[deg
s] if K∆qi < 3[deg

s]
K∆qi otherwise

(7)

Version 1.1; 2019–12–03 Page 23 of 24 c© TrimBot2020 Consortium, 2019

IST – 688007 – TrimBot2020 Deliverable D2.6

References

[1] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! [ros topics]. IEEE Robotics &
Automation Magazine - IEEE ROBOT AUTOMAT, 19:18–19, 03 2012.

[2] D. Kaljaca, N. Mayer, B. Vroegindeweij, A. Mencarelli, E. van Henten, and T. Brox.
Automated boxwood topiary trimming with a robotic arm and integrated stereo vision. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[3] D. Kaljaca, B. Vroegindeweij, and E. van Henten. Coverage Trajectory Planning for a Bush
Trimming Robot Arm. Journal of Field Robotics, pages 1–26, 2019.

Version 1.1; 2019–12–03 Page 24 of 24 c© TrimBot2020 Consortium, 2019

