System	Perception	Navigation	Trimming

TrimBot2020: Autonomous Outdoor Gardening Robot Using Passive Vision

Radim Tyleček, Bob Fisher

School of Informatics, University of Edinburgh

AgriFoodTech, December 2019

European Commission

Perception

Navigatio

Outdoor Gardening

Outdoor Gardening

Common Designs for Outdoors

- Built to control conditions
- Bulky enclosures
- Protect from environmental effects (wind, sunshine)
- Active light systems
- Large platforms

Building a Compact Consumer-grade Robot

- Can we achieve the same result with standard cameras?
- What accuracy can computer vision provide in the wild?

System •000 Overview Perception

Navigation

TrimBot2020 Project Objectives

Prototype the first outdoor garden trimming robot

- Research the underlying robotics and vision
- Navigate over varying terrain using a map
- Approach hedges, boxwood topiary, rose bushes
- Trim them to ideal shape

Robot components

- Mobile platform (base)
- Robotic arm with clipper (Kinova Jaco 6 DOF)
- Multiple camera system (10 base + 4 arm)

Perception

Navigation

Overview

TrimBot2020 Project Consortium

EU Horizon2020 project period: 2016 - 2019. Coordinator: Bob Fisher, University of Edinburgh

System 00●0	Perception 00000	Navigation 000000	Trimming 000000000000000000000000000000000000
Overview			
Video			

Cutting Hedge Research https://youtu.be/oFQ8eU7ySOQ

System	Perception	Navigation	Trimming
○○○●	00000	000000	000000000000000000000000000000000000
Platform			

Mobile Robot Platform

- Modified lawnmower base
 - Bosch Indego
- Retractable stabilizers
- Provides power supply
- Carries control computers
 - Pokini Mini PC
 - 2x Razor Blade notebooks
- Camera system + IMU
- Mounted arm with trimming tools

Final platform design

S	ysten	
0	000	

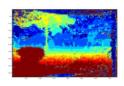
Perception

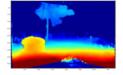
Navigation

Sensors

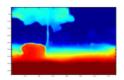
Camera System

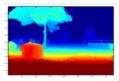
- Pentagonal rig
 - 5 x stereo cameras (WVGA)
 - 360 degrees view
- FPGA control board (ETHZ)
 - Synchronization @ 10 fps
 - On-board stereo @ 10 fps




Navigation

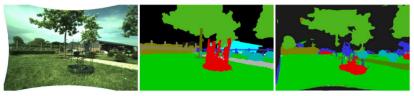
3D Sensing of Environment


- Passive sensors only
- Cameras + IMU
- Depth from 5 pairs
 - Stereo matching
 - FPGA, DispNet
- Supervised fusion (SDF-MAN)
- 3D data fusion


(c) FPGA SGM

(e) DispNet

(g) Supervised



(a) ground truth

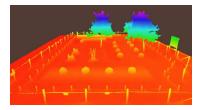
- Recognize types of objects around robot: grass, gravel, tree, trunk, rosebush, topiary bush, fence ...
- Deep neural network learned from synthetic and real datasets
- Detect obstacles and difficult terrain

RGB

Ground Truth

Predicted

Perception

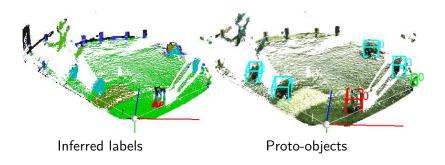

Navigation

Datasets

Real Garden Dataset

Real data captured in test garden

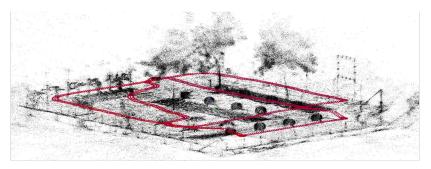
- Camera streams and poses
- 3D point clouds from laser scan
- Semantic annotation of both
- 10 primary classes
- 1500 images annotated



edge-Post opiary-Ellipsoin ose-Stem tose-Branch Rose-Flowe bstacle-Tree obstacle-Fence obstacle-FlowerPo bstacle-Wate obstacle-Post kobot-Vehicle Rackground-Gene Background-Road Background-Sky

Use point clouds, geometry, semantic labels for obstacle detection

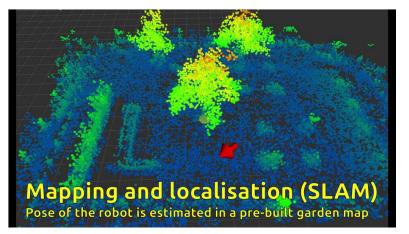
Perception


Navigation

Mapping

Simultaneous Localisation and Mapping (SLAM)

- Structure from Motion to build sparse 3D map of garden
- Real-time visual localisation gives 6 DOF pose estimation @ 5 Hz

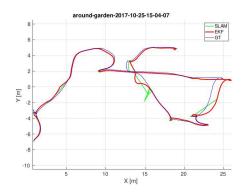


System 0000 Mapping

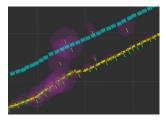
Perception

Navigation

SLAM 3D Feature Point Map



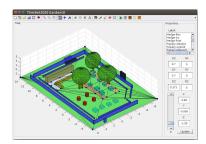
https://youtu.be/LimWPGydPKE



System	Perception	Navigation	Trimming
0000	00000	○○●○○○	000000000000000000000000000000000000
Localisation			

Multiple Sensor Fusion

- Multiple sensor fusion
 - GC-SLAM
 - IMU
 - wheel odometry
- Reduce latency
- Covariance estimation
 - SLAM pose confidence
 - Outliers, Lags

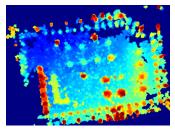

System	
0000	

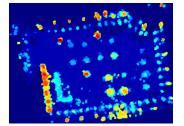
Navigation ○○○●○○

Navigation

Vehicle Navigation

- User drawn sketch map
 - Intended bush shape
 - Surface types
 - Slopes, obstacles
- Indicate bushes to trim
- Obstacle avoidance



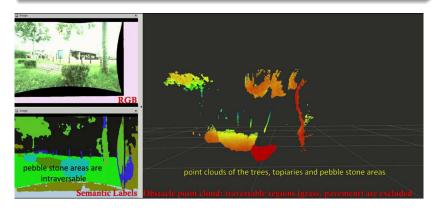


System 0000	Perception 00000	Navigation ○○○○●○	Trimming 000000000000000000000000000000000000
Outdoor navigation			
Uneven Ter	rrain		

Detection of slopes

Static obstacles: above estimated ground surface

height map


occupation probability

System 0000	Perception 00000	Navigation ○○○○○●	Trimming 000000000000000000000000000000000000
Outdoor navigation			
Uneven Te	errain		

Detect drivable surface types

Semantic segmentation to avoid gravel/mulch

System 0000 Tools Perception

Navigation

Trimming

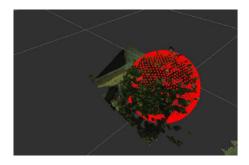
Interchangeable Trimming Actuators

Bush trimmer

- Counter-rotating blades
- Omni-directional cutting
- Custom design
- Visual servo to desired surface

Rose clipper

- Pruning of rose bushes
- Cut stems at defined locations
- Adapted Bosch product

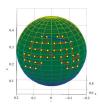


System	Perception	Navigation	Trimming
			000000000000000000000000000000000000000
Topiary Bush Trimming			

Plant Shape Representation

Where to cut and how much?

- Target (parameteric model) vs. observed shape (point cloud)
- Point cloud fused from multiple static views
- Detect outgrowing branches


Perceptio

Navigation 000000 Trimming

Topiary Bush Trimming

Topiary Trimming Control

- Visual servo for approach
- Arm mounted camera pair
- Multiple cutting sites around bush
- Cutter path planning

Perception

Navigation

Trimming

Topiary Bush Trimming

Topiary Trimming Tool

Custom-designed serrated rotating blades for efficiency Omni-directional trimming capability makes planning easier

https://youtu.be/daUtzo1gew4

Perception

Navigation

Trimming

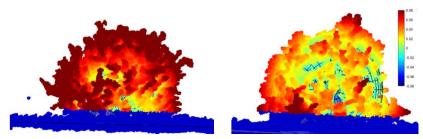
Topiary Bush Trimming

Topiary Trimming Results

sphere before

sphere after

3D point cloud scanned from high-res images


Perception

Navigation

Trimming

Topiary Bush Trimming

Topiary Trimming Results

sphere before

sphere after

color: distance from the target shape red=undercut, green=correct, blue=overcut

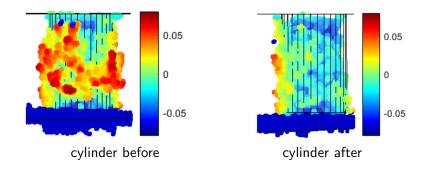
Perception

Navigation 000000 Trimming

Topiary Bush Trimming

Topiary Trimming Results

cylinder before


cylinder after

3D point cloud scanned from high-res images

System	Perception	Navigation	Trimming
0000	00000	000000	○000000●○○○○○○○
Topiary Bush Trimming			

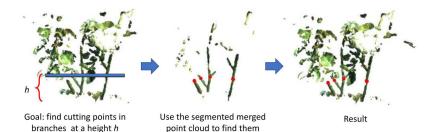
Topiary Trimming Results

color: distance from the target shape red=undercut, green=correct, blue=overcut

System 0000	Perception 00000	Navigation 000000	Trimming ○○○○○○○●○○○○○○
Rose Bush Trimming			
Rose Bush I	Dynamics		

Dealing with bend, flex, wind

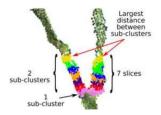
- Arm mounted camera for clip site detection.
- Light arm bends under weight of tools. Bushes flex during cutting. Wind creates noise in scans.
- Visual servoing to stems, online detection updates.

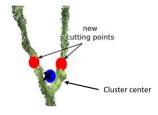


System 0000	Perception 00000	Navigation 000000	Trimming 000000000000000000000000000000000000
Rose Bush Trimming			
Finding Cu	tting Point		

Cut at given height

- Move arm around bush to scan using stereo camera
- Segment stems to get branch structure
- Local adaptation to avoid cutting at branching




System	Perception	Navigation	Trimming
0000	00000	000000	○○○○○○○○●○○○○○
Rose Bush Trimming			

Finding Cutting Point

Cut at given height

- Move arm around bush to scan using stereo camera
- Segment stems to get branch structure
- Local adaptation to avoid cutting at branching

System 0000	Perception 00000	Navigation 000000	Trimming ○○○○○○○○○○●○○○○
Rose Bush Trimming			
Rose Clinn	ing Tool		

Б

Modified Bosch electric clipper with position sensors

https://youtu.be/r9IHy51H8YM

Perceptio

Navigatio

Trimming

Rose Bush Trimming

Rose Trimming Results

Clipping success rate: 78% of stems cut After trimming from 3 sides 99% stems cut

System 0000	Perception 00000	Navigation 000000	Trimming ○○○○○○○○○○○○○○○
Rose Bush Trimming			
Conclusions			

- A working **prototype** based on standard color cameras
- Computer vision applied to natural domain
- Innovative manipulator design and control for trimming
- **Outputs**: research papers, several public datasets, some usable algorithms
- **Potential exploitation**: autonomous lawnmowers, manipulators for horticulture
- Marketable garden robot? Maybe in 5 years, 100M investment
- Issues: reliability, safety, user ease, manufacture, repair

System 0000	Perception 00000	Navigation 000000	Trimming ○○○○○○○○○○○○○○
Rose Bush Trimming			
Acknowled	gements		

8 Principal Investigators and 37 young researchers

Ы

Robert Fisher (coordinator), Fares Alnajar, Anil Baslamisli, Peter Biber, Sam Blaauw, Michael Blaich, **Thomas Brox**, Ian Cherabier, Hanz Cuevas Velasquez, David Fernandez Chaves, Marcel Geppert, **Theo Gevers**, Sebastian Haug, Jochen Hemming, Eldert van Henten, Dominik Honegger, Joris IJsselmuiden, Eddy Ilg, Dejan Kaljaca, Sezer Karaoglu, Viktor Larsson, Hoang-an Le, Maria Leyva Vallina, Nanbo Li, Manuel Lopez Antequera, Nikolaus Mayer, Angelo Mencarelli, Nikolai Petkov, Marc Pollefeys, Can Pu, Tonmoy Saikia, Torsten Sattler, Johannes Schönberger, Nicola Strisciuglio, Toon Tielen, Bart van Tuijl, Radim Tyleček, Benjamin Ummenhofer, Pieter de Visser, Bastiaan Vroegindeweij, Arjan Vrouegop, Maximilian Wenger, Michael Wilkinson, Huizhong Zhou

Funded by the European Union Horizon 2020 programme Project 688007, Jan 1, 2016 - Dec 31, 2019, 5.4M EUR

System 0000	Perception 00000	Navigation 000000	Trimming ○○○○○○○○○○○○○○
Rose Bush Trimming			
Webpage			

TrimBot2020 Project

Home Project - People Resources - Member Area - News Contact

TrimBot2020 is funded by the European Union Horizon 2020 programme

Hampen 2025 European Union Funding For Research & Instruction

http://trimbot2020.org

