
IST – 688007 – TrimBot2020 Deliverable D4.4

TrimBot2020 Deliverable D4.4

Missing Data Completion

Principal Author: University of Amsterdam (UvA)
Contributors:
Dissemination: RE

Abstract. The aim of Deliverable 4.4 is to automatically fill gaps due to
heavy occlusion and clutter in recorded 3D data. The recovered 3D structure
will feed back into the shared representation developed in T3.1.

Deliverable due: Month 38

Version 1.0; 2019–07–01 Page 1 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

Tile

Sp
ar

se
 to

 D
en

se

Image Depth Map D
ep

th
 P

oi
nt

 C
lo

ud
Tr

an
sf

or
m

at
io

n
Code

Po
in

t C
lo

ud
G

en
er

at
io

n

Sparse Complete
Point Cloud Output

Depth	to	Complete	Point	Cloud:

2D Grid

Figure 1: Overview of our framework. Our proposed network receives an image and the
corresponding depth map of the input image as input, and calculates the partial point cloud
based on the camera geometry. Then, a point cloud auto-encoder is applied to the predicted
partial point cloud to generate the representative code vector. The full point cloud is computed
from the code vector in a sparse-to-dense fashion. Finally, the 3D-2D refinement module
enforces the alignment between the generated full 3D point cloud and the depth map.

1 Overview

We approach the problem of missing data completion with a novel framework that generates
3D point cloud of an object from a single-view image.

Previous methods aim to represent the estimated 3D shape as a voxelized 3D occupancy grid.
However, those methods are computationally expensive, yielding considerable amount of over-
head during both training and inference. To overcome those limitations, recent methods focus
on deep CNNs to process and predict 3D point clouds. Nevertheless, they do not impose any
constrain for the inference procedure that makes them heavily depend on the quality of the
training data and the effectiveness of the learning process to generalize.

First, given an image of an object and the depth map, it computes the point cloud of the visible
part of the object. We refer to this (single-view) point cloud as the partial point cloud. The
computation of the partial point cloud is based on the camera model geometry. In this way,
we explicitly impose the camera model as a geometrical constraint in our transformation to
regulate the 2D-3D domain transfer. The point cloud completion module infers the full point
cloud using the partial point cloud as input. An encoder-decoder network is used to convert
the partial point cloud to the full point cloud [7]. The encoder is an auto-encoder that takes
the predicted partial point cloud as input and learns to reproduce it. We use a low-dimensional
representation, i.e. code vector, as the representative feature vector of the point cloud. The
decoder takes this feature vector to produce the full point cloud. Finally, the 3D-2D refinement
process enforces the alignment between the generated full point cloud and the depth map. The
refinement module imposes a 2D projection criterion on the generated point cloud together with
the 3D supervision on the depth.

2 Method

In this section, we give the overview of the each component.

Version 1.0; 2019–07–01 Page 2 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

2.1 Partial Point Cloud Generation

First of all, the framework takes a 2D image of an object and the related depth map. Then, the
(visible) point cloud is calculated based on the camera model. The aim is to regulate the 2D-3D
domain transfer and to constrain the structure of the learned manifold. In this way, we use the
provided depth map to compute the partial point cloud. Thus, during inference, geometrical
constraints are explicitly incorporated by means of depth estimation and the camera model.

The depth estimation can be achieved by DispNet, FPGA SGM stereo or GT point cloud
projection. Then, the partial point cloud is computed using a camera model. For a perspective
camera model, the correspondence between a 3D point (X, Y, Z) and its projected pixel location
(u, v) on an image plane is given by:

Z[u, v, 1]T = K(R[X, Y, Z]T + t) , (1)

where K is the camera intrinsic matrix. R and t denote the rotation matrix and the translation
vector.

2.2 Point Cloud Completion

The point cloud completion module consists of two parts: an extraction and a generation stage.
The aim of the extraction stage is to concisely represent the geometric information of the
partial point cloud by a code vector v. A point cloud auto-encoder is proposed to compute
the (lower-dimensional) code vector. The encoder part is based on graph max-pooling [5]
and DenseNet [2]. The output of the encoder is passed to a feature-wise global max-pooling
component to produce a k-dimensional vector, which is the basis of our latent space. The
decoder transforms the latent vector using 3 fully connected layers to produce the same input.
We use a k = 1024 representation, i.e. code vector, as the input for the generation of the full
point cloud.

In the generation stage, the network architecture is similar to the decoder of PCN [7]. The code
vector is taken as input. It produces a sparse output point cloud by a fully-connected decoder
[1]. Then, a detailed output point cloud is obtained by a folding-based decoder [6]. The fully-
connected decoder predicts a sparse set of points representing the global geometry of an object.
The folding-based decoder approximates a smooth surface representing the local geometry of a
shape. We generate n = 256 sparse point clouds by the fully-connected decoder, which are later
used as key point sets. Eventually, a N = 1024 complete point cloud is generated as output of
the network.

2.3 3D-2D Refinement

The aim of the 3D-2D refinement is to reduce these estimation error due to misalignments and
artifacts. To that end, the generated point cloud is used as a 3D self-supervision component.
A point-wise 3D Euclidean distance is used between the partial point cloud and the full point
cloud. To constrain the generated point cloud using the 2D projection supervision, we penalize
points in the projected image which are outside the silhouette.

Version 1.0; 2019–07–01 Page 3 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

3 Results

3.1 Synthetic Natural Environment Dataset

We consider the Natural Environment Dataset (NED) [4] created for the Trimbot2020 project. In
contrast to man-made objects, the NED dataset consists of (3D) synthetic scene-centric images
from outdoor (natural) environments like gardens and parks. Three categories are selected:
hedges, rocks and topiaries. We train and test PSGN [1], GAL [3] and our method on these
images, see Figure 2. Both GAL and our method generate accurate 3D point clouds while
PSGN fails for some parts of the 3D shapes. Table 1 shows the quantitative results for this
dataset. Our proposed method outperforms the other methods to recover the point clouds of the
three categories of NED. Additional results and other details can be found in [8]1.

CD EMD IoU
PSGN GAL Ours PSGN GAL Ours PSGN GAL Ours

hedges 6.445 3.809 3.298 11.564 5.836 5.489 0.526 0.704 0.697
rocks 4.592 2.775 2.481 6.973 4.179 3.927 0.383 0.596 0.596

topiaries 3.702 2.285 2.065 7.355 3.763 3.393 0.435 0.633 0.648
mean 4.913 2.956 2.615 8.631 4.593 4.270 0.448 0.644 0.647

Table 1: Chamfer Distance (CD), Earth Mover’s Distance (EMD) and intersection over union
(IoU) metrics on the NED dataset. Both CD and EMD numbers are scaled by a factor of 100.

Input Ground Truth PSGN GAL Ours

H
ed
ge
s

R
oc
ks

To
pi
ar
ie
s 

Figure 2: Qualitative results on the object-centric NED dataset.

1Under submission to a conference

Version 1.0; 2019–07–01 Page 4 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

3.2 Real World Experiments

We also provide test results of our approach on real-world garden images. We use the model
trained with the NED dataset directly and run it on real images without any fine-tuning. Figure 3
shows a topiary object and the reconstruction results from four representative viewpoints, where
the depth information is provided by the Trimbot FPGA SGM stereo. Figure 4 shows a hedge
object and the reconstruction results from four representative viewpoints, where the depth infor-
mation is provided by GT point cloud projection. Both images are taken from Wageningen test
garden. It can be (visually) derived that our model trained on synthetic data (NED) generalizes
well to the real-world garden images also with depth maps provided by different modules.

4 Software Package

The algorithm is implemented in Tensorflow 1.0 and is provided within the ROS ecosystem and
split into multiple ROS nodes:

• uva data completion, uva data completion view: our pipeline module that
receive RGB/grayscale images and the corresponding depth map, and reconstructs a
complete point cloud of the object.

Version 1.0; 2019–07–01 Page 5 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

Figure 3: Qualitative results on the Wageningen test garden for a topiary object. First row is
input image and the corresponding depth map by the Trimbot FPGA SGM stereo. Next two
rows show the reconstruction results from four representative viewpoints.

Version 1.0; 2019–07–01 Page 6 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

Figure 4: Qualitative results on the Wageningen test garden for a hedge object. First row is
input image and the corresponding depth map by GT point cloud projection. Next two rows
show the reconstruction results from four representative viewpoints.

Version 1.0; 2019–07–01 Page 7 of 8 c© TrimBot2020 Consortium, 2019



IST – 688007 – TrimBot2020 Deliverable D4.4

References

[1] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d
object reconstruction from a single image. In CVPR, volume 2, page 6, 2017.

[2] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In CVPR, volume 1, page 3, 2017.

[3] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. Gal: Geometric adversarial loss for
single-view 3d-object reconstruction. In European Conference on Computer Vision, pages
820–834. Springer, Cham, 2018.

[4] Hoang-An Le, Anil S Baslamisli, Thomas Mensink, and Theo Gevers. Three for one and
one for three: Flow, segmentation, and surface normals. In Proceedings of British Machine
Vision Conference.

[5] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local structures
by kernel correlation and graph pooling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 4, 2018.

[6] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-
encoder via deep grid deformation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 3, 2018.

[7] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point
completion network. In 2018 International Conference on 3D Vision (3DV), pages 728–
737. IEEE, 2018.

[8] W. Zeng, S. Karaoglu, and T. Gevers. Inferring point clouds from single monocular images
by depth intermediation. In arXiv preprint arXiv:1812.01402.

Version 1.0; 2019–07–01 Page 8 of 8 c© TrimBot2020 Consortium, 2019


