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Abstract: We demonstrate how we can reconstruct a dynamic 3D point
cloud from a sequence of stereo pairs. Based on the optical flow and disparity
modules from Deliverable 5.2, points are triangulated in 3D space, each of
them with an attached 3D motion vector. This enables tracking of relevant
object parts like branches in 3D space over time. We demonstrate that points
on an initial plant state are tracked under chaotic plant and camera motion,
and points identified on a plant in motion can be back-projected onto the
plant’s resting state.

Deliverable due: Month 32
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1 Background

left camera view disparity optical flow

Figure 1: Raw components for point and surface tracking: disparity and optical flow
(provided by the scene flow software package) are used to reconstruct scenes in 3D, including
plant and camera motion.

The TrimBot2020 project uses a stereo camera mounted on the arm to reconstruct the 3D
shape of the plant to be trimmed, to indentify its shape and to capture deviations from the
desired shape.

For visual servoing it is important that a point on the plant surface can be re-identified even
if the point moves away from its initial position. Such motion can be induced by the motion of
the camera, or by motion of the plant itself.

Therefore, we built a software that reconstructs a 3D point cloud together with the 3D
motion vectors for each point of the point cloud from a sequence of stereo images. The
reconstruction including its motion components yields a dynamical 3D model of the visible
environment and can be used for visual servoing and closed-loop visual control. The software
is built upon the dense scene flow software as documented in deliverable D5.2 Scene Flow
Software. Fig. 1 shows the output of that software.

2 Software availability
The point tracking and evaluation software, as well as its dependencies, will be available at
https://github.com/lmb-freiburg/ROS-packages.

3 Dense dynamical scene model
To avoid invalid measurements, left-right and forward-backward consistency checks are em-
ployed in the disparity and optical flow components of the scene flow module. Fig. 1 shows the
effect of the left-right consistency check on the disparity map: occlusions, object boundary re-
grions, and overly hard to match (e.g. featureless) areas are removed. The resulting pointclouds
are less dense, but cleaner and more consistent over time than when omitting the consistency
checks.

Using intrinsically and extrinsically calibrated stereo camera, the disparity maps produced
by DispNet are unprojected into 3D. The optical flow maps from FlowNet2 then provide tem-
poral information about the motion of the 3D point in a plane parallel to the camera sensor.
The missing depth-component of motion is retrieved from another disparity map for the second
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frame. Together, full 3D motion is thus reconstructed for all visible points (modulo consistency
checks).

Figure 2: Dynamic-surface tracking.

4 Demonstration

4.1 Reconstruction consistency in dynamic scenes
Fig. 2 visualizes that points on a surface are densely tracked, and a simple motion magnitude
threshold segments the scene into static and independently moving points.

This scene uses a static camera and shows deformation of a plant by means of physical
contact. The video bundled with this document (surface-tracking.mp4) shows this
scene in motion.

4.2 Robust point and surface tracking
Fig. 3 (bottom) shows that our recovered motion fields can be used to stabilize an observation
sequence under significant irregular plant motion (i.e. the deformable surface is robustly recon-
structed in its initial shape), by computing for each new frame the scene flow back to the initial
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frame, and using the resulting motion vectors to backproject the new frame’s pixels back into
the initial frame.

In Fig. 4, we track points frame-to-frame (via dense flow fields) instead of to an initial frame
to show that tracking is stable and consistent over time.

As a dense frame-to-frame approach, this fails in case of degenerate inputs (e.g. severe
motion blur) because tracking cannot be resumed once a point is lost (note that all tracked
points are visible during the entire sequence).

mean image (raw input) mean image (stabilized input)

Figure 3: Observation stabilization for surface recovery: Despite significant plant motion,
the backwarping-stabilized mean image shows that most of the surface can be robustly tracked.

initial points points during motion final points
(overlay on mean image)

Figure 4: Tracking under camera motion: points on feature-bearing and feature-poor areas
are tracked through a camera motion sequence.

4.3 Quantitative Evaluation
We evaluated tracking performance on a dataset in which the robot arm performs a scanning
trajectory of a spherical bush.

Fig. 6 shows the distribution of spatial distances between initial reconstruction points and
tracked points after the 130 frames shown in Fig. 5 (note that this only measures correspon-
dences as they were tracked; there is no guarantee that the correspondences were correct).

Our tracking is based on direct scene flow estimation without point reidentification, so pixels
can only be tracked as long as they stay in frame. This leads to only a small fraction of the initial
point cloud still being tracked after 130 frames, as shown in Fig. 7. Still, those points that were
tracked show stable positions.
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Frame 1 Frame 23 Frame 51

t
Frame 112 Frame 132

Figure 5: Tracking sequence: Snapshots from the dataset from which Fig. 6 and Fig. 7 were
evaluated, with highlighted example points. Note how little of the initial frame stays visible
throughout the sequence. One arm of the point cross is out of view between frames 51 and 112,
and is subsequently lost from tracking.
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Figure 6: Point tracking error: Histogram of point registration errors after frame-to-frame
tracking over 130 frames. The measured error is the metric distance between a reconstructed
3D point in the first frame, and its tracked correspondence after 130 frames. This measurement
includes extrinsic and intrinsic camera calibration errors, as well as robot arm pose inaccuracies.
Almost all points which are still tracked after 130 frames are registered with an error of
less than 2cm. Only ca. 35k of initially ca. 180k points were tracked; the rest was lost due to
occlusions, consistency checks in DispNet or FlowNet, or because they exited the camera view
at some point. The number of points with error > 5cm was negligible.

(a) Frame 2 (b) Frame 130

Figure 7: Tracking error correlation with distance to camera: (a) Immediately after tracking
starts, points further from the camera already exhibit large tracking errors; this can largely be
attributed to depth noise in DispNet (which scales with depth). (b) After 130 frames, only
points on the bush remain tracked (due to various reasons, see Fig. 6). These points show error
accumulation, but an overall stable registration.
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