

TrimBot2O2O: an outdoor robot for automatic gardening

50th International Symposium on Robotics, 20-21 June 2018, Munich

Horizon 2020 European Union funding for Research & Innovatio

grant no. 688007

Project Consortium

TrimBot2020 project

"to prototype the first outdoor robot for automatic bush trimming and rose cutting"

Horizon 2020 European Union funding for Research & Innovation

University of Amsterdam

university of groningen

TrimBot2020 objectives and components

Prototype the first outdoor garden trimming robot

- Research the underlying robotics and vision
- Navigate over varying terrain
- Approach boxwood topiary, rose bushes
- Trim them to ideal shape

Robot components

- Mobile platform (base)
- Kinova Jaco robotic arm with clipper
- Multiple camera system

Challenges

Dynamic environment

Weather and seasonal changes

Variable lighting conditions

Navigation over diverse terrains

Detection of slopes and drivable surfaces

Plant shape representation

Where to cut and how much?

Target vs. observed shape

Accuracy of trimming

Bend, flex, wind

Visual servoing to bushes

Mobile platform

Based on Bosch Indego lawn mower

+ Retractable stabilizers

Carries control computers

Pokini Mini PC

- 2x RazorBlade notebooks
- Camera system + IMU

Robotic arm with trimming tools

Custom trimming tools

Bush trimmer

- **Counter-rotating blades**
- **Omni-directional cutting**
- Visual servo to desired surface

Rose cutter

- Pruning of rose bushes
- Cut stems at defined locations

Robotic arm control

Stereo camera on the arm for bush shape fitting to 3D data

Cutter path planning and visual servoing (open loop). Multiple cutting sites around bush

Closed-loop visual servoing (future work)

Camera sensors

5 pairs of stereo cameras (WVGA) 360° field of view FPGA synchronization @10Hz On-board stereo @10Hz

Localization and Mapping

- Visual SLAM for 6DOF pose estimation based on local features
- 10 cameras are modeled as a generalized camera
- @5Hz

3D sensing of the environment

Passive sensors only

Stereo pairs

- 5 pairs for navigation (FPGA)
- 1 pair for visual servoing (DispNet)

Dynamic reconstruction

Optical flow (FlowNet 2.0) – tracking of branch movements

Scene Understanding

Image segmentation

Image intrinsics decomposition

Input RGB

Albedo GT

Our Albedo Prediction

Shading GT

Our Shading Prediction

Navigation

- Rough user drawn sketch map
 - Surfaces
 - Bushes
 - Obstacles, slopes
- Indicate the target bush to trim and obstacles to avoid
- Integrated-visual representation (on going/future work)

Test gardens: Wageningen and Renningen

Workshops, Challenges, Exhibitor's booths

3D Reconstruction meets Semantics (3DRMS) workshop

1st edition @ICCV 2017, Venice

2nd edition @ECCV 2018, 9th September 2018, Munich

Challenge on combining 3D and semantic information in complex scenes http://trimbot2020.webhosting.rug.nl/events/3drms/

https://gitlab.inf.ed.ac.uk/3DRMS/Challenge2018

Paper submission (full papers and exdended abstract) deadline - July 10th

Challenge deadline - <u>August 31st</u>

Upcoming

EU project exhibitor's booth at IROS 2018 (1-5 October, Madrid)

Data sets

Real data recorded in the garden

Camera streams (with pixel-wise gt)

3D Point clouds (semantically annotated)

https://gitlab.inf.ed.ac.uk/3DRMS/Challenge2017

(Place recognition benchmark coming soon)

Synthetic data

Rendered from virtual garden

Varied lighting conditions

https://gitlab.inf.ed.ac.uk/3DRMS/Challenge2018

Project Website

www.trimbot2020.org

TrimBot2020 Project

Home Project - Resources - Publicity Events - Member Area - News Contact

Follow Us on social media

@Trimbot2020 www.trimbot2020.org

Horizon 2020 European Union funding for Research & Innovatio

Thank you

