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1 Overview
The imaging conditions of gardens may vary significantly over, even small, periods of time
influencing the appearance of garden objects and scene. For example, garden objects may
contain shadow, specular highlights, shading and illumination changes. Therefore, intrinsic
image/video decomposition is investigated to separate garden recordings into reflectance (i.e.
albedo) and illumination artifacts. Intrinsic representations of garden proto-objects are im-
portant for robust 3D semantic segmentation and detection, measuring invariant appearance
properties of proto-objects, the proper rendering of objects for visualization, and updating the
3D map of the garden.

Intrinsic image decomposition is the process of separating an image into its formation
components such as reflectance and shading (illumination) [1]. Reflectance is the color of the
object, invariant to camera viewpoint and illumination conditions, whereas shading, dependent
on camera viewpoint and object geometry, consists of different illumination effects, such as
shadows, shading and inter-reflections. Using intrinsic images, instead of the original RGB
images, can be beneficial for many computer vision algorithms. For instance, for shape-from-
shading algorithms, the shading images contain important visual cues to recover geometry,
while for segmentation and detection algorithms, reflectance images can be beneficial as they
are independent of confounding illumination effects.

2 Creating Synthetic Dataset for Garden-specialized Train-
ing

The availability of annotated large-scale datasets is key to the success of supervised deep learn-
ing methods. Because of the absence of large-scale datasets annotated with garden-specialized
semantics and intrinsic properties which requires a good amount of person-hour effort but play
a key role in deep learning algorithms, we decided to establish a synthetic design. A large set of
synthetic gardens are created featuring plants and common garden objects. The dataset contains
different species of vegetation such as trees and flowering plants with different types of terrains
and landscapes under different lighting conditions. Furthermore, scenarios are created which
involves human intervention such as the presence of bushes (like rectangular hedges or spherical
topiaries), fences, flowerpots and planters, and etc. (16 classes in total). There is a substantial
variety of object colors and geometry. The dataset is constructed by using the parametric tree
models [2] (implemented as add-ons in Blender software), and several manually-designed mod-
els from the Internet that aim for realistic natural scenes and environments. Ambient lighting
is provided by real HDR sky images with a parallel light source. Light source properties are
designed to correspond to daytime lighting conditions such as clear sky, cloudy, sunset, twilight,
etc. For each virtual garden, we capture the scene from different perspectives with motion
blur effects. Scene are rendered with the physics-based Blender Cycles1 engine respecting the
design of the TrimBot’s ring camera setup. The dataset consists of 400K images, depicting
130 various garden models (12 meters x 12 meters) under 6 lighting conditions. The dataset
includes intrinsics, semantics, depth maps, surface normals, 3D point clouds, optical flow, light
source properties and camera parameters. A number of samples are shown in Figure 1.

1https://www.blender.org/
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Figure 1: Sample images from the synthetic garden dataset.

3 Three for one and one for three: Flow, Segmentation, and
Surface Normals

Optical flow, semantic segmentation, and surface normals represent different information modal-
ities, yet together they bring better cues for scene understanding problems. In this section, we
study the influence between the three modalities: how one impacts on the others and their
efficiency in combination. To assist the training process we use the synthetic garden dataset
mentioned in the previous section. This way we can also evaluate the synthetic garden dataset’s
quality on the results. As different information sources provide different cues to understand
the world, they could also become complementary to each other. For example, certain objects
have specific motion patterns (flow and semantics), an object’s geometry provides specific cues
about its category (surface normals and semantics), and object’s boundary curves provide cues
about motion boundaries (flow and surface normals). Details of the research can be found in our
publication [3]. The main conclusions of this work for the intrinsic image decomposition task
is (i) the benefit of surface normals and semantic segmentation tasks on other visual modalities,
which will be discussed in Section 5 and Section 6, and (ii) the effectiveness of the generated
synthetic garden dataset.

4 CNN based Learning using Reflection and Retinex Models
for Intrinsic Image Decomposition

Since there are multiple unknowns and multiple solutions to recover the pixel intrinsics, intrinsic
image decomposition is an ill-posed and under-constrained problem. Therefore, most of the
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traditional work derive priors about the scene characteristics and impose constraints on the
reflectance and shading maps. Usually an optimization procedure is used enforcing imaging
constraints for pixel-wise decomposition. In addition to the traditional work, more recent re-
search focuses on using deep learning (e.g. CNN) models. However, these deep learning-based
methods do not consider the well-established, traditional image formation process as the basis
of their intrinsic learning process. Deep learning is used as in-and-out black box, which may
lead to inadequate or restricted results. Furthermore, the contribution and physical interpretation
of what the network learned is often difficult to interpret. As a consequence, although current
deep learning approaches show superior performance when considering quantitative benchmark
results, traditional approaches are still dominant in achieving high qualitative results.

Therefore, the aim of this research is to exploit the best of the two worlds and to get an
insight on how successful will the deep learning models work for the intrinsic image decom-
position task for TrimBot2020. As a result, a method is proposed that (1) is empowered by
deep learning capabilities, (2) considers a physics-based reflection model to steer the learn-
ing process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting
reflectance and shading gradient information.

To this end, a physics-based convolutional neural network, IntrinsicNet, is proposed first.
A standard CNN architecture is chosen to exploit the dichromatic reflection model [4] as a
standard reflection model to steer the training process by introducing a physics-based loss
function called the image formation loss, which takes into account the reconstructed image
of the predicted reflectance and shading images:

The goal is to analyze the contribution of exploiting the image formation process as a
constraining factor in a standard CNN architecture for intrinsic image decomposition. Then,
we propose the RetiNet, which is a two-stage Retinex [5] inspired convolutional neural network
which first learns to decompose (color) image gradients into intrinsic image gradients i.e. re-
flectance and shading gradients. Finally, these intrinsic gradients are used to train the CNN to
decompose, at the pixel, the full image into its corresponding reflectance and shading images.

As mentioned in Section 2, the availability of annotated large-scale datasets is key to the
success of supervised deep learning methods. However, the largest publicly available dataset
with intrinsic image ground-truth has around a thousand of redundant images taken from an
animated cartoon-like short film [6]. Nonetheless, at the time of this research was conducted our
synthetic garden dataset was under construction. Therefore, to train our CNNs, we introduce
another large scale dataset with only intrinsic ground-truth images: a synthetic dataset with
man-made objects. The dataset consists of around 20,000 images. Rendered with different
environment maps and viewpoints, the dataset provides a variety of possible images in indoor
and outdoor scenes. A number of samples are shown in Figure 2.

4.1 Approach
In this section, the image formation model is described first. Then, we propose an encoder-
decoder CNN, called IntrinsicNet, which is a convolutional neural network based on the reflec-
tion model by introducing the image formation loss. Finally, we propose a new CNN architec-
ture, RetiNet, which is a Retinex-inspired scheme that exploits image gradients in combination
with the image formation loss.
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Figure 2: Overview of the synthetic dataset with man-made objects. Different environment
maps are used to render the models for realistic appearance.

4.1.1 Image Formation Model

The dichromatic reflection model [4] describes a surface as a composition of the body Ib
(diffuse) and specular Is (interface) reflectance:

I = Ib + Is . (1)

Then, the pixel value, measured over the visible spectrum ω, is expressed by:

I = mb(~n,~l)

∫
ω

fc(λ) e(λ) ρb(λ) dλ + ms(~n,~l, ~v)

∫
ω

fc(λ) e(λ) ρs(λ) dλ , (2)

where ~n is the surface normal, ~l is the light source direction, and ~v is the viewing/camera
direction. m is a function of the geometric dependencies (e.g. Lambertian ~n · ~l). Furthermore,
λ is the wavelength, fc(λ) is the camera spectral sensitivity, e(λ) defines the spectral power
distribution of the illuminant, ρb characterizes the diffuse surface reflectance i.e. the albedo
(intrinsic color), and ρs is the specular reflectance with Fresnel reflection.

Assuming a linear sensor response, a single light source and narrow band filters (λI),
Equation (2) is as follows:

I = mb(~n,~s) e(λI) ρb(λI) + ms(~n,~s,~v) e(λI) ρs(λI) . (3)

Then, under the assumption of body (diffuse) reflection, the decomposition of the observed
image I(~x) at position ~x can be approximated as the element-wise product of its reflectance
R(~x) and shading S(~x) intrinsics:

I(~x) = R(~x)× S(~x) . (4)
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In Equation (3), e(λI) is modeled as a single, canonical light source. We can extend the
model for a non-canonical light source as follows:

I(~x) = R(~x)× S(~x)× E(~x) , (5)

where E(~x) describes the color of the light source at position ~x. The model for a global, non-
canonical light source is described by:

I(~x) = R(~x)× S(~x)× E . (6)

Equation (4) is extended to non-diffuse reflection by adding the specular (surface) term H(~x):

I(~x) = R(~x)× S(~x) +H(~x) , (7)

and for a non-canonical light source by:

I(~x) = R(~x)× S(~x)× E(~x) +H(~x)× E(~x) . (8)

Finally, for a global, non-canonical light source we obtain:

I(~x) = R(~x)× S(~x)× E +H(~x)× E . (9)

In the next section, the reflection model is considered to introduce different image formation
losses within an encoder-decoder CNN model for intrinsic image decomposition.

Figure 3: IntrinsicNet model architecture with one shared encoder and two separate decoders:
one for shading and one for reflectance prediction. The encoder part contains both shading and
reflectance characteristics. The decoder parts aim to disentangle those features.

4.1.2 IntrinsicNet: CNN driven by Reflection Models

In this section, a physics-based deep learning network, IntrinsicNet, is proposed. Figure 3
illustrates our model. We use a standard CNN architecture, VGG16 [7], to constrain the training
process by introducing a physics-based loss. The reason of using a standard CNN architecture
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is to analyze whether it is beneficial to constrain the CNN by the reflection model. Therefore,
an end-to-end trainable encoder-decoder CNN is considered. These type of CNNs yield good
results in most of the pixel-wise dense prediction tasks [8, 9]. An architecture is adopted
with one shared encoder and two separate decoders: one for shading prediction and one for
reflectance prediction. The features learned by the encoder stage contain both shading and
reflectance cues. The purpose of the decoder parts is to disentangle those features. Obviously,
the architecture can be extended by considering more image formation factors (e.g. the light
source or highlights) by adding the corresponding decoder blocks.

To train the model, we use the standard L2 reconstruction loss. Let Ĵ be the ground-truth
intrinsic image and J be the prediction of the network. Then, the reconstruction loss LRL is
given by:

LRL(J, Ĵ) =
1

n

∑
~x,c

||Ĵ − J ||22 , (10)

where ~x denotes the image pixel, c the channel index and n is the total number of evaluated
pixels. In our case, the final, combined loss LCL is composed of 2 distinct loss functions, one
for reflectance reconstruction LRLR

and one for shading reconstruction LRLS
:

LCL(R, R̂, S, Ŝ) = γR LRLR
(R, R̂) + γS LRLS

(S, Ŝ) , (11)

where the γs are the corresponding weights. In general, this type of network may generate color
artifacts and blurry reflectance maps [8, 9]. The goal of the image formation loss is to increase
the color reproduction quality because of the physics constraint.

More precisely, the image formation loss LIMF takes into account the reconstructed image
of the predicted reflectance and shading images. That is in addition to the RGB input image.
Hence, this loss imposes the reflection model constraint of Equation 4:

LIMF (R, S, I) = γIMF LRLIMF
((R× S), I) , (12)

where I is the input image. Thus, the final loss of the IntrinsicNet becomes:

LFL(I, R, R̂, S, Ŝ) = LCL(R, R̂, S, Ŝ) + LIMF (R, S, I) . (13)

Note that the image formation loss is not limited to Equation 4. Any intrinsic image
Equation 4-9 can be used depending on the intrinsic problem at hand. For example, the loss
function for the full reflection model LFRM is as follows:

LFRM(∗) = γR LRLR
(R, R̂) + γS LRLS

(S, Ŝ) + γH LRLH
(H, Ĥ) +

γE LRLE
(E, Ê) + γIMF LRLIMF

((R× S × E +H × E), I) .
(14)

The image formation loss function is designed to augment the color reproduction. To
augment both color reproduction and edge sharpness, in the next section, a two-stage Retinex-
inspired CNN architecture is described which uses intrinsic gradients (for edge sharpness) and
the image formation loss (for color reproduction).

Version 1.2; 2019–02–04 Page 7 of 39 c© TrimBot2020 Consortium, 2019



IST – 688007, – TrimBot2020 Deliverable D4.1

4.1.3 RetiNet

In this section, we exploit how a well-established, traditional approach such as Retinex [5] can
be used to steer the design of a CNN architecture for intrinsic image decomposition. Therefore,
we propose the RetiNet model. In fact, the RetiNet architecture is a two-stage Retinex-inspired
CNN that exploits gradient information in combination with the image formation loss. Actually,
most of the traditional approaches follow the successful Retinex findings of using gradient
separation [10–15]. In contrast to threshold-driven gradient separation, the goal of our network
is to learn intrinsic gradients directly from data avoiding hard-coded thresholds. Further, for
the re-integration process, we propose a series of simple convolutions to efficiently compute the
intrinsic images separately. That is in contrast to other methods which try to find, by complex
computations, the pseudo-inverse of an unconstrained system of derivatives, or to solve the
Poisson equation.

Image gradients are calculated by taking the intermediate difference between neighboring
pixels; horizontal (Gx) and vertical (Gy) separately. Finally, the gradient magnitude (G) is given
as the square root of the sum of squares of the horizontal and the vertical components of the
gradient:

G =
√
Gx

2 +Gy
2 (15)

This operation is carried out for each color channel individually. Then, the input is formed by
concatenating the RGB image with its gradients per color channel, resulting in a 6 channel
input. In this way, the network is assisted by image gradients. Finally, the encoder-decoder
network is trained to separate color image gradients to intrinsic image gradients by using
Equation (11):

LS1 = LCAL(∇R,∇R̂,∇S,∇Ŝ), (16)

where ∇ denotes the image gradient. For the first stage, we use the IntrinsicNet architecture
described in the previous section. For the second stage, the input image is concatenated with
the predicted intrinsic gradients this time. The newly formed input is provided to a fully
convolutional sub-network to perform the actual decomposition by using Equation 13 with the
intrinsic loss. Figure 4 illustrates our RetiNet model.

Figure 4: RetiNet model architecture. Refer to Figure 3 for layer types and encoder-decoder
sub-network details. Instead of generating intrinsic image pixel values, the encoder-decoder
network is trained to separate (color) image gradients into intrinsic image gradients. Then, for
gradient re-integration part, the input image is concatenated with predicted intrinsic gradients
and forwarded to a fully convolutional sub-network to perform the actual pixel-wise intrinsic
image decomposition.
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4.2 Experiments
4.2.1 New Synthetic Dataset of Man-made Objects

As mentioned in Section 4, for the experiments, a large scale synthetic dataset of man-made
objects is created. We randomly sample around 20,000 3D models obtained from the ShapeNet
dataset [16] for training. To create more variation and to decouple the correlation between
image shape and texture, the texture of each component in a model is replaced by a random
color. To enforce the lighting model, we apply a diffuse bidirectional scattering distribution
function (BSDF) on the object surface with a random roughness parameter. The rendering
is performed by the physics-based Blender Cycles2. Different environment maps are used to
render the models at random viewpoints sampled from the upper hemisphere as conducted
in [8]. To guarantee the relationship between reflectance and shading, the Cycles pipeline is
modified to obtain the output image, its corresponding reflectance, and the shading map in
high-dynamic range without gamma-correction. Since the images are taken from objects, the
final dataset of around 20,000 images are object-centered. The object-centered dataset represent
man-made objects. An overview of the datasets is given in Figure 2. Rendered with different
environment maps and viewpoints, the dataset provides a variety of possible images in indoor
and outdoor scenes.

4.2.2 Error Metrics

To evaluate our approach, metrics are chosen which are commonly used in the field. First,
the results are evaluated in terms of the mean squared error (MSE) between the ground-truth
intrinsic images and the measured ones. Following common practice, absolute brightness of
each image is adjusted to minimize the error. Further, the local mean squared error (LMSE) [12]
is chosen which is computed by aggregating the MSE scores over all local regions of size k× k
with steps of k/2. Following the setup of [12], all the results in the evaluations use k = 20.
The LMSE scores of the intrinsic images are averaged and normalized to make the maximum
possible error equal to 1. Finally, to evaluate the perceptual visual quality of the results, the
dissimilarity version of the structural similarity index (DSSIM) is taken, as done in [17].

4.3 Evaluation
4.3.1 Image Formation Loss

Figure 5 shows detailed views of a patch, demonstrating the benefits of the image formation
loss. It can be derived that the image formation loss suppresses color artifacts and halo effects.
Furthermore, Table 1 shows the quantitative evaluation results of our IntrinsicNet with and with-
out the image formation loss (LIMF ). The experiments on the MIT intrinsic benchmark [12]
show that the image formation loss constrains the model to obtain improved color reproduction
as expressed quantitatively by the DSSIM metric. In addition, the model with the image
formation loss obtains better results for the MSE and LMSE metrics on average. On the
ShapeNet test set, the model with the image formation loss achieves similar performance for
MSE and LMSE. On DSSIM, it produces proper results for albedo prediction. Considering
the generalization ability and the effect on a unseen real-world dataset, it can be observed that

2https://www.blender.org/
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IN (-) IN (+)Input GT

Figure 5: MIT intrinsic benchmark differentiated by the use of the image formation loss. IN
(+/-) denotes the IntrinsicNet with/without the image formation loss. The image formation loss
suppresses color artifacts and halo effects.

the network with image formation loss achieves best performance for all metrics. It shows the
positive contribution of exploiting the image formation process as a constraining factor in a
standard CNN approach for intrinsic image decomposition.

MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

∗Without LIMF 0.0045 0.0062 0.0309 0.0326 0.0940 0.0704
∗With LIMF 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441

+Without LIMF 0.0005 0.0007 0.0300 0.0498 0.0075 0.0082
+With LIMF 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084

Table 1: Evaluation results of the IntrinsicNet with and without image formation loss on the
MIT intrinsic benchmark (∗) and the ShapeNet test set (+). The image formation loss constrains
the model to obtain better DSSIM performance. At the same time, it outperforms other models
considering the MSE and LMSE metrics on real world images.

4.3.2 ShapeNet Dataset

We now test our models on the ShapeNet test partition. We follow the approach of [16] and
randomly pick 1 image per test model, resulting in 7000 test images. For all experiments,
the same test set is used. Table 2 provides the quantitative evaluation results of the synthetic
test set of man-made objects. Figure 6 displays (visual) comparison results for a number of
objects. Our proposed methods yield better results on the test set. Moreover, our RetiNet model
outperforms all by a large margin. Visual comparison results show that all of our proposed
models are capable of producing decent intrinsic image compositions on the test set.

Version 1.2; 2019–02–04 Page 10 of 39 c© TrimBot2020 Consortium, 2019



IST – 688007, – TrimBot2020 Deliverable D4.1

MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

DirectIntrinsics [18] 0.1487 0.0505 0.6868 0.3386 0.0475 0.0361
ShapeNet [8] 0.0023 0.0037 0.0349 0.0608 0.0186 0.0171
IntrinsicNet 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084

RetiNet 0.0003 0.0004 0.0205 0.0253 0.0052 0.0064

Table 2: Evaluation results on ShapeNet. Our proposed methods yield better results on the test
set. Moreover, our RetiNet model outperforms all by a large margin.

IN (-)Input IN (+) RN GT

Figure 6: Evaluation results on the synthetic test set. All proposed models produce
decent intrinsic image compositions. IN(+/-) denotes the IntrinsicNet with/without the image
formation loss, and RN denotes the RetiNet model.

4.3.3 MIT Intrinsic Dataset

To assess our model on real world images, the MIT intrinsic image dataset [12] is used. The
dataset consists of 20 object-centered images with a single canonical light source. Figure 8
displays (visual) results and Table 3 provides the numeric comparison to other state-of-the-
art approaches. Our proposed methods yield better results compared with ShapeNet [8] and
DirectIntrinsics [18] models. It can be derived that our proposed models properly recover the
reflectance and shading information.

However, IntrinsicNet without the image formation loss generates color artifacts, and both
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MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

Color Retinex [12] 0.0032 0.0348 0.0353 0.1027 0.1825 0.3987
DirectIntrinsics [18] 0.0277 0.0154 0.0585 0.0295 0.1526 0.1328

ShapeNet [8] 0.0468 0.0194 0.0752 0.0318 0.1825 0.1667
IntrinsicNet 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441

RetiNet 0.0128 0.0107 0.0652 0.0746 0.0909 0.1054
RetiNet + GT∇ 0.0072 0.0034 0.0429 0.0224 0.0550 0.0443

Table 3: Evaluation results on MIT intrinsic benchmark. Our proposed methods yield better
results compared with other models. Experiment with intrinsic gradient ground-truths shows
the benefits of exploiting them.

IntrinsicNets create blurry results compared with RetiNet. In addition, if an image contains a
strong shadow cast, as in the deer image, models struggle to eliminate it from the reflectance
image. On the other hand, in RetiNet colors appear more vivid in the reflectance image and it
suppresses most of the remaining color artifacts and blurriness that are present in IntrinsicNets.
Figure 7 displays a detailed analysis of RetiNet.

Finally, a small experiment is conducted to evaluate the edge performance of our methods.
100 patches were randomly selected around edges. These edge patches are tested by our two
CNNs for patch level edge quality comparison. The results for the reflectance images are for
IntrinsicNet vs. RetiNet MSE(0.0108 vs. 0.0093), LMSE(0.0804 vs. 0.0595), DSSIM(0.0977
vs. 0.0887). That demonstrates the superior performance of RetiNet model on edge patches.

IN (+) RNInput GT

Figure 7: MIT intrinsic benchmark differentiated by the different models. IN(+) is the
IntrinsicNet with the image formation loss, and RN denotes the RetiNet model (including the
image formation loss). In RetiNet colors appear more vivid in the reflectance image and it
suppresses most of the remaining color artifacts and blurriness that are present in IntrinsicNets.
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SN IN (-) IN (+) RN

Figure 8: MIT intrinsic benchmark differentiated by the different models. SN is the ShapeNet
model of [8], IN(+/-) denotes the IntrinsicNet with/without the image formation loss, and RN
denotes the RetiNet model (including the image formation loss). Proposed models properly
recover the reflectance and shading information. IntrinsicNet without the image formation loss
generates color artifacts, and both IntrinsicNets create blurry results compared with RetiNet.

4.3.4 Real and In-the-wild Images

We also evaluate our RetiNet algorithm on real and in-the-wild images. Figure 9 shows the
performance of our method for a number of images. The results show that it can capture proper
reflectance image, free of shadings caused by geometry. Finally, we present the reconstructed
input from its albedo and shading prediction to show that the decomposition is consistent.

4.4 Conclusion
We proposed two deep learning models considering a physics-based reflection model and gradi-
ent information to steer the learning process. The contributions of the research are as follows. 1:
New is the physics-based image formation model in the design of the loss functions. 2: A novel,
end-to-end solution is proposed to the well-known Retinex approach based on derivatives. 3:
New is the gradient separation part of the RetiNet model in which albedo and shading gradients
are learned using a CNN. 4: A (re)integration part is introduced where images are integrated
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Figure 9: RetiNet applied on real images. It can capture proper albedo image, free of shadings
due to geometry.

based on gradients by a set of simple convolutions. To train the models, an object centered large-
scale synthetic dataset with intrinsic ground-truth images was created. Proposed models were
evaluated on synthetic, real world and in-the-wild images. The evaluation results demonstrated
that the new model outperforms existing methods. Furthermore, visual inspection showed
that the image formation loss function augments color reproduction and the use of gradient
information produces sharper edges. Additional details of the research can be found in our
publication [19].

5 Joint Learning of Intrinsic Images and Semantic Segmen-
tation

Semantic segmentation of outdoor scenes is a challenging problem in computer vision. Varia-
tions in imaging conditions may negatively influence the segmentation process. These varying
conditions include shading, shadows, inter-reflections, illuminant color and its intensity. As
image segmentation is the process of identifying and semantically grouping pixels, drastic
changes in pixel values may hinder a successful segmentation. Current methods try to mitigate
the effects of illumination artificially by hand crafted features. Therefore, they are limited in
compensating for possible changes in photometry (i.e. illumination). Deep learning based
methods may learn to accommodate photometric changes through data exploration. However,
they are constrained by the amount of data such that it is not possible to cover all the variations
caused by the illumination. On the other hand, albedo is invariant to all kinds of illumination
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effects. As a result, using albedo images for semantic segmentation task can be favorable, as
they do not contain any illumination effect. Additionally, not only segmentation may benefit
from reflectance, but also segmentation may be useful for reflectance computation. Information
about an object reveals strong priors about its intrinsic properties. Each object label constrains
the color distribution and is expected to reflect that property to class specific reflectance values.
Therefore, distinct object labels provided by semantic segmentation can guide the intrinsic
image decomposition process by yielding object specific color distributions per label. Further-
more, semantic segmentation process can act as an object boundary guidance map for intrinsic
image decomposition by enhancing cues that differentiate between reflectance and occlusion
edges in a scene. In addition, homogeneous regions (i.e. in terms of color) within an object
segment should have similar reflectance values.

Therefore, in this research, the tasks of semantic segmentation and intrinsic image decom-
position are considered as a combined process by exploring their mutual relationship in a joint
fashion. Hence, instead of using narrow and specific invariant features, we focus on image
formation invariance induced by a full intrinsic image decomposition.

To this end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic
image decomposition and semantic segmentation. The joint learning includes an end-to-end
trainable encoder-decoder CNN with one shared encoder and three separate decoders: one for
reflectance prediction, one for shading prediction, and one for semantic segmentation predic-
tion. In addition to joint learning, we explore new cascade CNN architectures to use reflectance
to improve semantic segmentation, and semantic segmentation to steer the process of intrinsic
image decomposition.

5.1 Approach
5.1.1 Image Formation Model

As done in the previous section, to formulate our intrinsic image decomposition Equation 4 is
considered as the diffuse reflectance component. Additionally, when the light source is colored,
it is also embedded in the shading component. Then, semantic segmentation is defined as the
task of per pixel labeling of the RGB image.

5.1.2 Baseline Model Architectures

Intrinsic Image Decomposition. We use the model proposed by [8], ShapeNet, without
the specular highlight module. The model is shown in the dotted rectangle part of Figure
10. The model provides state-of-the results for intrinsic image decomposition task. Early
features in the encoder block are connected with the corresponding decoder layers, which
are called mirror links. That proves to be useful for keeping visual details and producing
sharp outputs. Furthermore, the features across the decoders are linked to each other (inter-
connections) to further strengthen the correlation between the components. Additionally, the
network is lightweight and easy to train. To train the model for intrinsic image decomposition
task, we use a combination of the standard L2 reconstruction loss (MSE) with its scale invariant
version (SMSE). Let J be the prediction of the network and Ĵ be the ground-truth intrinsic
image. The standard L2 reconstruction loss LMSE is given by Equation 10. Then, SMSE scales
J first and compares MSE with Ĵ :
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ENCODER

REFLECTANCE

SHADINGINPUT
RGB

SEGMENTATION

DECODER - ALBEDO

DECODER - SHADING

DECODER - SEGMENTATION

Figure 10: Model architecture for jointly solving intrinsic image decomposition and semantic
segmentation with one shared encoder and three separate decoders: one for shading, one for
reflectance, and one for semantic segmentation prediction. The part in the dotted rectangle
denotes the baseline ShapeNet model of [8]. All the decoders are connected with each other.

LSMSE(J, Ĵ) = LMSE(αJ, Ĵ), (17)

α = argmin LMSE(αJ, Ĵ). (18)

Then, the combined loss LIL for training an intrinsic component becomes:

LIL(J, Ĵ) = γSMSE LSMSE(J, Ĵ) + γMSE LMSE(J, Ĵ), (19)

where the γs are the corresponding loss weights. The final loss LFIL for training the model for
intrinsic image decomposition task becomes:

LFIL(R, R̂, S, Ŝ) = γR LIL(R, R̂) + γS LIL(S, Ŝ). (20)

Semantic segmentation. The same architecture is used as the baseline for semantic segmenta-
tion task. However, one of the decoders is removed from the architecture, because there is only
one task. As a consequence, inter-connection links are not used for the semantic segmentation
task. Furthermore, as a second baseline, we train an off-the-shelf segmentation algorithm [20],
SegNet, that is specifically engineered for semantic segmentation task.

To train the model for semantic segmentation, we use the cross entropy loss:

LCE = − 1

n

∑
~x

∑
L∈O~x

log(pL~x ) , (21)

where p is the output of the softmax function to compute the posterior probability of a given
pixel ~x belonging to Lth class, where L ∈ O~x and O~x = {0, 1, 2, · · ·, C} as the category set for
pixel level class label.
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5.1.3 Joint Model Architecture

In this section, a new joint model architecture is proposed. It is an extension of the base model
architecture for intrinsic image decomposition task, ShapeNet [8], that combines the two tasks
i.e. intrinsic image decomposition and semantic segmentation. We modify the baseline model
architecture to have one encoder and three distinct decoders i.e. one for reflectance prediction,
one for shading prediction, and one for semantic segmentation prediction. We maintain the
mirror links and inter-connections. That allows for the network to be constrained with different
outputs, and thus reinforce the learned features from different tasks. As a result, the network
is forced to learn joint features for the two tasks at hand not only in the encoding phase, but
also in the decoding phase. Both encoder and decoder parts contain both intrinsic properties
and semantic segmentation characteristics. This setup is expected to be exploited by individual
decoder blocks to learn extra cues for the task at hand. Figure 10 illustrates the joint model
architecture. To train the model jointly, we combine the task specific loss functions by summing
them together:

LJL(I, R, R̂, S, Ŝ) = γCE LCE + γFIL LFIL(R, R̂, S, Ŝ). (22)

5.2 Experiments
5.2.1 The Synthetic Garden Dataset

For the experiments, we utilize the synthetic dataset introduced in Section 2 for garden-specialized
training. We take a subset consisting of 35,000 images, which depicted 40 various gardens under
5 lighting conditions. For the experiments, the dataset is randomly split into 80% training and
20% testing (scene split).

5.2.2 Error Metrics

Error metrics introduced in Section 4.2.2 are used to evaluate intrinsic image decomposition
tasks. For the semantic segmentation task, we report on global pixel accuracy, mean class
accuracy and mean intersection over union (mIoU).

5.3 Evaluation
5.3.1 Influence of Reflectance on Semantic Segmentation

In this experiment, we evaluate the performance of reflectance and RGB color images as input
for the semantic segmentation task. We train an off-the-shelf segmentation algorithm SegNet [20]
using (i) ground-truth reflectance (Albedo − SegNet) and (ii) RGB color images (RGB −
SegNet); separately, and (iii) RGB + reflectance (Comb. − SegNet); together, as input. The
results are summarized in Table 4 and illustrated in Figure 11. Further, confusion matrices for
(RGB − SegNet) and (Albedo− SegNet) are provided in Figure 12.

The results show that semantic segmentation algorithm highly benefits from illumination
invariant intrinsic properties (i.e. reflectance). The combination (Comb. − SegNet) outper-
forms single RGB input (RGB − SegNet). On the other hand, the results with reflectance as
single input (Albedo − SegNet) are superior to the results with inputs including RGB color
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Input RGB Albedo GT RGB-SegNet Albedo-SegNet GT

Figure 11: Qualitative evaluation of the influence of reflectance on semantic segmentation.
The results show that the semantic segmentation algorithm highly benefits from illumination
invariant intrinsic properties (i.e. reflectance).

Table 4: Semantic segmentation accuracy using albedo and RGB images as inputs. Using
albedo images significantly outperforms RGB images.

Methodology Global Pixel Class Average mIoU
RGB − SegNet 0.8743 0.6259 0.5217
Comb.− SegNet 0.8958 0.6607 0.5577
Albedo− SegNet 0.9147 0.6739 0.5810

images in all metrics. The combined input (Comb.− SegNet) is not better than using only re-
flectance (Albedo−SegNet), because the network may be negatively influenced by the varying
photometric cues introduced by the RGB input. Although the CNN framework may learn, to
a certain degree, illumination invariance, it is not possible to cover all the variations caused by
the illumination. Therefore, a full illumination invariant representation (i.e. reflectance) helps
the CNN to improve semantic segmentation performance. Moreover, the confusion matrices
show that the network is unable to distinguish a number of classes based on RGB input. Using
reflectance, the same network gains the ability to correctly classify the ground class, as well as
making fewer mistakes with similar-looking box hedge and topiary classes.

5.3.2 Influence of Semantic Segmentation on Intrinsic Decomposition

In this experiment, we evaluate the performance of intrinsic image decomposition using ground-
truth semantic segmentation labels as an extra source of information to the RGB images.
We compare the performance of intrinsic image decomposition trained with RGB images
(RGB) only as input and intrinsic decomposition trained with RGB images and ground-truth
semantic segmentation labels (RGB+SegGT ) together as their input. As for RGB+SegGT ,
four input channels (i.e. RGB color image and semantic segmentation labels) are provided
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Figure 12: Confusion matrices for (RGB−SegNet) and (Albedo−SegNet). Using reflectance,
the network gains the ability to correctly classify the ground class, as well as making fewer
mistakes with similar-looking box and topiary classes.

Table 5: The influence of semantic segmentation on intrinsic property prediction. Providing
segmentation as an additional input (RGB + SegGT ) clearly outperforms the approach of
using only RGB color images as their input.

MSE LMSE DSSIM
Alb Shad Alb Shad Alb Shad

RGB 0.0094 ± 0.008 0.0088 ± 0.0078 0.0679 ± 0.0412 0.0921 ± 0.0582 0.1310 ± 0.0535 0.1303 ± 0.0495
RGB + SegGT 0.0076 ± 0.0063 0.0078 ± 0.0064 0.0620 ± 0.0384 0.0901 ± 0.0613 0.1141 ± 0.0472 0.1312 ± 0.0523

as input. The results are summarized in Table 5. As shown in the table, intrinsic image
decomposition clearly benefits from segmentation labels. RGB+SegGT outperformsRGB in
all metrics. DSSIM metric, accounting for the perceptual visual quality, shows the improvement
on reflectance predictions, which indicates that the semantic segmentation process can act as an
object boundary guidance map for reflectance prediction. A number of qualitative comparisons
are shown for RGB and RGB + SegGT in Figure 13.

5.3.3 Joint Learning of Semantic Segmentation and Intrinsic Decomposition

In this section, we evaluate the influence of joint learning on intrinsic image decomposition
and semantic segmentation performances. We perform three experiments. First, we evaluate
the effectiveness of joint learning of intrinsic properties and semantic segmentation considering
semantic segmentation performance. Second, we evaluate the effectiveness of joint learning of
intrinsic property and semantic segmentation to obtain intrinsic property prediction. Finally, we
study the effects of the weights of the loss functions for the tasks.
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Input RGB RGB RGB+SegGT GT

Figure 13: Columns 2 and 3 show that RGB + SegGT is better in removing shadows and
shading from the reflectance images, as well as preserving sharp object boundaries and vivid
colors, and therefore is more similar to the ground truth.

Experiment I. In this experiment, we evaluate the performance of the proposed joint learning-
based semantic segmentation algorithm (Joint), an off-the-shelf semantic segmentation algo-
rithm [20] (SegNet) and the baseline of one encoder one decoder ShapeNet [8] (Single). All
CNNs receive RGB color images as their input. SegNet and Single output only pixel level
object class label predictions, whereas the proposed method predicts intrinsic property (i.e.
reflectance and shading) in addition to the object class labels. We compare the accuracy of the
models in Table 6.

Table 6: Comparison of the semantic segmentation accuracy. The proposed joint learning
framework outperforms the single task frameworks in all metrics.

Methodology Global Pixel Class Average mIoU
Single 0.8022 0.4584 0.3659
SegNet 0.8743 0.6259 0.5217
Joint 0.9302 0.7055 0.6332

As shown in Table 6, the proposed joint learning framework outperforms the single task
frameworks in all metrics. Further, visual comparison between SegNet and the proposed joint
framework is provided in Figure 14. By analyzing the 3rd and 4th row of the figure, it can
be derived that unusual lighting conditions negatively influence the results of the SegNet. In
contrast, our proposed method is not effected by varying illumination due to the joint learning
scheme. Furthermore, our method preserves object shapes and boundaries when compared
to the SegNet model (rows 1, 2 and 5). Note that the joint network does not perform any
additional fine-tuning operations (e.g. CRF etc.). Additionally, SegNet architecture is deeper
than our proposed model. However, our method still outperforms SegNet. Finally, the joint
network outperforms the single task cascade network; for mIoU 0.6332 vs. 0.5810, see Table 4
and Table 6, as the joint scheme enforces to augment joint features. Finally, confusion matrices
are provided in Figure 15. Confusion matrices show that the ability to distinguish close-color
classes under different lighting conditions is further improved by joint learning. Similar to
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the case with using albedo as input for SegNet architecture, joint learning also improves the
semantic segmentation performance significantly with certain classes. For the ground class,
confusion is reduced remarkably by also learning intrinsics. Likewise, similar looking (in terms
of shape and color) box and topiary classes are also better distinguished. In addition, most of
the small confusions are eliminated.

Input RGB Albedo GT SegNet Ours GT

Figure 14: Proposed joint learning framework outperforms single task framework SegNet. Our
method preserves the object shapes and boundaries better and is robust against varying lighting
conditions

Experiment II. In this experiment, we evaluate the performance of the proposed joint learning-
based and the state-of-the-art intrinsic image decomposition algorithms [8] (ShapeNet). Both
CNNs receive RGB color images as input. ShapeNet outputs only intrinsic properties (i.e.
reflectance and shading), whereas the proposed method predicts pixel level object class labels
as well as intrinsic properties. We train ShapeNet and the proposed method using ground-
truth reflectance and shading labels on the training set of the proposed dataset. We compare the
accuracy of ShapeNet and the proposed method in Table 7.

As shown in Table 7, the performance of the proposed joint learning framework outperforms
single task learning (ShapeNet) in all the metrics for reflectance (albedo) and shading estima-
tion. Further, our joint model obtains lower standard deviation values. To give more insight
on reflectance prediction performances, a number of visual comparisons between ShapeNet
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Figure 15: Confusion matrices for SegNet and proposed Joint model. Results suggest that
close-color classes under different lighting conditions is further improved by joint learning and
most of the small confusions are eliminated.

Table 7: Influence of joint learning on intrinsic property prediction

MSE LMSE DSSIM
Alb Shad Alb Shad Alb Shad

ShapeNet 0.0094 ± 0.0080 0.0088 ± 0.0078 0.0679 ± 0.0412 0.0921 ± 0.0582 0.1310 ± 0.0535 0.1303 ± 0.0495
Int.-Seg. Joint 0.0030 ± 0.0040 0.0030 ± 0.0024 0.0373 ± 0.0356 0.0509 ± 0.0395 0.0753 ± 0.0399 0.0830 ± 0.0381

and the proposed joint framework are given in Figure 16. In the figure, (the first two columns)
it can be derived that the semantic segmentation process acts as an object boundary guidance
map for the intrinsic image decomposition task by enhancing cues to differentiate between
reflectance and occlusion edges in a scene. Hence, object boundaries are better preserved by
the proposed method (e.g. the separation between pavement and ground in the first image and
the space between fences in the second image). In addition, information about an object reveals
strong priors about it’s intrinsic properties. Each object label adopts to a constrained color
distribution. That can be observed in third and fourth columns. Semantic segmentation guides
intrinsic image decomposition process by yielding the trees to be closer to green and flowers to
be closer to pink. Moreover, for class-level intrinsics, the best improvement (3.3 times better)
is obtained by concrete step blocks, which have achromatic colors. Finally, as in segmentation,
the joint network outperforms the single task cascade network, see Table 5 and Table 7.

Experiment III. In this experiment, we study the effects of the weightings of the loss functions.
As the cross entropy loss is an order of magnitude higher than the SMSE loss, we first normalize
them by multiplying the intrinsic loss by 100. Then, we evaluate different weights on top of the
normalization (SMSE×100×w). See Table 8 for the results. If higher weights are assigned to
intrinsics, they both jointly increase. However, weights which are too high negatively influence
the mIoU values. Therefore, w = 2 appears to be the proper setting for both tasks.
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Figure 16: The first two columns illustrate that the proposed method provides sharper outputs
especially at object boundaries than ShapeNet. The 3rd and 4th columns show that the
proposed method predicts colours that are closer to the ground truth reflectance. The last column
shows that the proposed method handles sharp cast shadows better than ShapeNet.

Table 8: Influence of the weighting of the loss functions. SMSE loss is weighted by (SMSE×
100× w). w = 2 appears to be the proper setting for both tasks.

ω
Segmentation MSE LMSE DSSIM

Global mIoU Alb Shad Alb Shad Alb Shad
0.01 0.9179 0.567 0.0083 ± 0.0068 0.0083 ± 0.0072 0.0650 ± 0.0412 0.0920 ± 0.0611 0.1224 ± 0.0498 0.1343 ± 0.0545
0.5 0.7038 0.512 0.0038 ± 0.0037 0.0035 ± 0.0027 0.0398 ± 0.0311 0.0550 ± 0.0416 0.1633 ± 0.0538 0.1353 ± 0.0497
1 0.9048 0.533 0.0044 ± 0.0041 0.0044 ± 0.0036 0.0477 ± 0.0352 0.0655 ± 0.0474 0.0926 ± 0.0445 0.1040 ± 0.0421
2 0.9302 0.633 0.0030 ± 0.0040 0.0030 ± 0.0024 0.0373 ± 0.0356 0.0509 ± 0.0395 0.0753 ± 0.0399 0.0830 ± 0.0381
4 0.9334 0.611 0.0028 ± 0.3300 0.0028 ± 0.0023 0.0356 ± 0.0300 0.0491 ± 0.04081 0.0716 ± 0.0380 0.0695 ± 0.0357

5.3.4 Real and In-the-wild Images

Finally, our model is evaluated on real world garden images provided by the 3D Reconstruc-
tion meets Semantics challenge [21]. The images are captured by a robot driving through a
semantically-rich garden (Wageningen Trimbot test garden) with fine geometric details. Results
of [8] are provided as a visual comparison on the performance in Figure 17. It shows that our
method generates better results on real images with sharper reflectance images having more
vivid and realistic colors. Moreover, our method mitigates sharp shadow effects better. Note
that our model is trained fully on synthetic images and still provides satisfactory results on
real, natural scenes. For semantic segmentation comparison, we fine-tuned SegNet [20] and our
approach on the real world dataset after pre-training on the garden dataset. Since we only have
the ground-truth for segmentation, we (only) unfreeze the segmentation branch. Results show
that SegNet and our approach obtain 0.54 and 0.54 for mIoU and a global pixel accuracy of
0.85 and 0.88 respectively. Results are shown in Figure 18. For segmentation, the joint learning
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performs comparable to the baseline, yet we achieve sharper results. Note that our model is
much smaller in size and predicts the intrinsics together with the segmentation.

Input RGB

Ours

ShapeNet

Figure 17: Evaluation on real world garden images. We observe that our proposed method
capture better colors and sharper outputs compared with [8].

Input RGB GT SegNet Joint

Figure 18: Semantic segmentation evaluation on real world garden images. The joint learning
performs comparable to the baseline, yet achieves sharper results.
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5.4 Conclusion
Our approach jointly learns intrinsic image decomposition and semantic segmentation. New
CNN architectures are proposed for joint learning, and single intrinsic-for-segmentation and
segmentation-for-intrinsic learning. The experiments show joint performance benefit when per-
forming the two tasks (intrinsics and semantics) in a joint manner for natural scenes. Additional
details of the research can be found in our publication [22].

6 ShadingNet: Image Intrinsics by Fine-Grained Shading De-
composition

In general, existing (traditional and new) intrinsic image decomposition algorithms assume
that strong image variations are due to albedo changes and that smooth image variations are
caused by shading. However, this assumption does not often hold for real images as they may
suffer from strong photometric changes due to environmental conditions such as cast shadows
and inter-reflections. As a consequence, existing methods may fail to correctly distinguish
strong (cast) shadows from albedo variations. Confusing strong shadows with reflectance
variations may negatively influence the quality of the resulting intrinsic image decomposition.
For example, the deer image mentioned earlier in Section 4.3.3.

Therefore, instead of decomposing images into shading and reflectance only, we propose
to decompose the shading component into three separate components to represent the different
photometric effects.

To this end, the body term of the dichromatic reflection model [4] is extended to decompose
the shading component into direct (light source) and indirect light conditions (ambient light
and cast shadows). Using the fine-grained model, two different end-to-end deep convolutional
neural networks (CNNs) are proposed. Further, to steer the deep learning models, surface
normals are considered as an extra source of information. Surface normals are expected to
assist (1) the shading prediction as they are part of the shading formation process and (2) the
reflectance prediction as they are invariant to photometric effects.

Additionally, we extend a subset of the synthetic garden dataset to generate direct shading
(shading due to surface geometry and illumination conditions), cast shadows, and ambient light
(inter-reflections) maps.

6.1 Approach
6.1.1 Image Formation Model

We again use the diffuse (Lambertian) component of the dichromatic reflection model [4] as the
basis of our image formation model, Equation 2. However, we redefine Equation 4 with new
annotations which will be useful for further derivations:

I = ρsu , (23)

where an image I can be modelled by a product of its unified shading su = e(~n·~l) and reflectance
ρ components. If the light source e is colored, then the color information is embedded in the
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illumination (shading) component. In general, in the context of intrinsic image decomposition,
the shading component su is only defined for direct light (i.e. no occlusion) as follows:

sd = ed(~n ·~l) , (24)

where ed is the intensity of the light source. Obviously, Equation 24 does not include photo-
metric effects such as ambient light or cast shadows. However, this assumption is often violated
for real images. To compute intrinsic images, modelling these photometric effects may help to
correctly distinguish strong (cast) shadows from albedo variations.

6.1.2 Image Formation Model with Composite Shading

To incorporate the photometric effects of ambient light and (cast) shadows, two terms are added
to Equation 23:

I = ρed(~n ·~l) + ρe+a (~n ·~l) + ρe−a (~n ·~l) , (25)

where ed is the intensity of direct light as defined by Equation 24. The indirect light ei = e+a +e
−
a

consists of ambient light, denoted by (e+a ), resulting in an additive term. Shadows are modelled
by a negative term e−a . Then, we obtain the composite shading model:

I = ρs , (26)

where the fine-grained shading component s distinguishes the three photometric effects:

s = e(~n ·~l) = (ed + e+a + e−a )(~n ·~l) , (27)

where, e = ed+e
+
a +e

−
a is the intensity of the composite lighting effects, ed is the intensity of the

light source (i.e. direct, non-occluded light), and indirect light (where direct light is occluded) is
modelled by a combination of e+a denoting the intensity of ambient light (e.g. inter-reflections)
and e−a modeling the negative value of shadows. Ambient light (e+a ) causes objects to appear
brighter, whereas shadows (e−a ) cause objects to appear dimmer.

6.1.3 ShadingNet

Using the image formation model of Equation 26, we propose two different modifications that
can be applied to any regular encoder-decoder type CNN architecture that is designed for
the standard intrinsic image decomposition task (simultaneous estimation of the intrinsics of
Equation 23). Both modifications include end-to-end trainable encoder-decoder CNN mod-
els, ShadingNets. First, we extend the shading decoder to contain multiple outputs for the
photometric effects (intrinsic modification). Secondly, we extend the entire architecture by
adding extra decoder blocks for each photometric effect (extrinsic modification). Figure 19
illustrates the different models. We show the effectiveness of the extensions by modifying
ShapeNet [8] which is a state-of-the-art architecture specifically engineered for intrinsic image
decomposition. The model is shown in the dotted rectangle part of Figure 10.
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Figure 19: On the left, a standard encoder-decoder architecture (Equation 23), in the middle,
intrinsic modification with Squeeze − and − Excitation blocks [23], on the right, extrinsic
modification with extra decoders. ed denotes direct shading, e−a is for cast shadows and e+a is
for ambient light, su is for unified shading, and ρ is for albedo.

Intrinsic Modification. We extend the shading decoder to generate multiple outputs for the
photometric effects. To that end, we extend the shading decoder module with Squeeze-and-
Excitation blocks (SE) [23]. The motivation is that for the standard intrinsic image decompo-
sition task, shading is taken as a single, unified component including all photometric effects.
The shading decoder includes all shading features which can be further decomposed into the
photometric effects that it is composed of (feature sharing). Therefore, we integrate SE blocks
at the end of the shading decoder to perform feature re-calibration. By using SE blocks,
predictions of the photometric cues are conditioned on one unified shading decoder that in
return enhances feature discriminability.

Extrinsic Modification. We extend the entire architecture by adding extra decoder blocks per
photometric effect. As a result, the architecture has 1 encoder and 4 distinct decoders; for
albedo, direct shading, cast shadows and ambient light predictions. Unlike intrinsic modifica-
tion, shading features are not shared within one decoder. In this way, the gradient flow from
separate decoder blocks will boost the feature discriminability. Furthermore, we follow the
design of ShapeNet and interconnect all the decoder blocks with each other. As a result, joint
learning of features is reinforced.

6.1.4 Influence of Surface Normals

We use surface normals as an extra source of information. The surface normals are expected
to assist (1) the shading prediction as they are part of the shading formation process and (2)
the reflectance prediction as they are invariant to photometric effects. We explore two different
ways to utilize surface normals as an input to a network. First, we use a single encoder with 6-
channel input; RGB color image and surface normal ground-truths are concatenated and fed to
the network (early fusion) for learning. Second, we use one separate encoder per input source.
Then, the latent representations of both branches are combined to create a joint representation
of the image (intermediate fusion).
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6.2 Experiments
6.2.1 The Synthetic Garden Dataset

To train our models and baselines, we extend a subset of the synthetic garden dataset, around
30,000 images, to generate direct shading (shading due to surface geometry and illumination
conditions), cast shadows, and ambient light (inter-reflections) ground-truth images. For the
experiments, the dataset is randomly (scene) split resulting 15 gardens for training, around 25k
images, and 3 gardens for testing, around 6k images. Figure 20 illustrates samples from the
extended dataset.

Diffuse RGB Albedo GT Shading GT

Direct Shading GT Ambient Light GT Cast Shadow GT

Figure 20: Sample images from the extended synthetic garden dataset with ground-truth
intrinsics and fine-grained shading components.

6.2.2 Evaluation Metrics

Error metrics introduced in Section 4.2.2 are used to evaluate intrinsic image decomposition
qualities; MSE, LMSE, and DSSIM. Moreover, we provide weighted human disagreement rate
(WHDR) for IIW [24] evaluations.
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6.3 Evaluation
6.3.1 Influence of Surface Normals

In this experiment, we evaluate the influence of surface normals as an extra source of in-
formation for intrinsic image decomposition. We train ShapeNet [8] and IntrinsicNet [19]
architectures with modifications to the input branch by using NED. First, we use a single
encoder with a 6-channel input; RGB color image and surface normal ground-truth image
are concatenated and fed to the network (early fusion). Second, we use one separate encoder
per input source. Then, the latent representations of both branches are combined to create a
joint representation of the image (intermediate fusion). In this case, skip connections [25] are
used for both encoders. We compare the results with the baselines that only use one branch
encoder with RGB color images as input. All networks produce one reflectance map and one
unified shading map. For the experiments, ground-truth surface normals are used. The results
are summarized in Table 9.

ShapeNet [8]
MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading
RGB only 0.0053 0.0050 0.0597 0.0910 0.2516 0.2186

Early Fusion 0.0044 0.0056 0.0596 0.1102 0.328 0.3285
Intermediate Fusion 0.0043 0.0035 0.0581 0.0854 0.2502 0.2500

IntrinsicNet [19]
MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading
RGB only 0.0035 0.0037 0.0449 0.0791 0.2367 0.2110

Early Fusion 0.0027 0.0030 0.0358 0.0575 0.0967 0.1010
Intermediate Fusion 0.0025 0.0027 0.0329 0.0528 0.0916 0.0883

Table 9: Influence of surface normals on the intrinsic image decomposition predictions.
Providing surface normals as additional inputs clearly outperforms the approach of using a
single RGB color input. Intermediate fusing strategy appears to be the best approach.

Table 9 shows that intrinsic image decomposition highly benefits from surface normals as an
additional input to our CNN models. Both early and intermediate fusion strategies outperform
the single RGB color input. Assigning each input source with its own encoder (with skip
connections) and own bottleneck appears to be a better option. This is because the network
extracts and feed-forwards features independently to the decoder blocks. In this way, the
decoder blocks can decide which cues are related to their specific task.

6.3.2 Intrinsic vs. Extrinsic Modification

In this experiment, we evaluate the architectural modifications. We train the ShadingNet ar-
chitectures with; the intrinsic modification, where a single shading decoder contains multiple
outputs for the photometric effects with SE blocks, and, the extrinsic modification, where
photometric effects are estimated via individual decoder blocks. Ultimately, modifications
with surface normal inputs using individual encoder blocks are presented. The results are
summarized in Table 10.
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MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

ShapeNet [8] 0.0053 0.0050 0.0597 0.0910 0.2516 0.2186
ShapeNet [8] + SN 0.0043 0.0035 0.0581 0.0854 0.2502 0.2500

Intrinsic M. 0.0048 0.0054 0.0585 0.1179 0.2757 0.3188
Extrinsic M. 0.0049 0.0049 0.0592 0.1157 0.2774 0.2732

Intrinsic M. + SN 0.0027 0.0048 0.0405 0.1211 0.1019 0.2361
Extrinsic M. + SN 0.0018 0.0029 0.0365 0.0890 0.0812 0.2200

Table 10: Influence of intrinsic and extrinsic modifications. SN denotes the model with surface
normal encoder. Both modifications improve albedo estimations due to the presence of extra
photometric cues.

The results show that albedo estimations are improved by the multi-varied shading model.
Both intrinsic and extrinsic modifications improve the results on average. Thus, intrinsic image
decomposition highly benefits from the fine-grained shading decomposition. Assigning each
photometric effect to its own decoder appears to be the better option. Further, the contribution
of surface normals is more significant than the Lambertian model. However, to form the shading
component, the 3 photometric effects are combined. Thus, the quality of the shading component
depends on the quality of the photometric effects combined. For the Lambertian model there
is only one shading component estimated, which may explain the drop in shading results. In
addition, the quality of the photometric effects and the influence of the surface normal are
presented for both modifications in Table 11.

MSEintrinsic MSEextrinsic

SN (+) SN (-) SN (+) SN (-)
Cast Shadow 0.0217 0.0274 0.0441 0.0455

Ambient Light 0.0018 0.0025 0.0036 0.0040
Direct Shading 0.0290 0.0381 0.0141 0.0302

Table 11: Quality of the direct and indirect shading effects. SN (+) denotes the model with
surface normal encoder.

Table 11 shows that surface normals are essential and influence positively the quality of
the fine-grained shading intrinsics. The intrinsic model appears to be the better option for
photometric effects as indirect shading components are conditioned on one unified shading
decoder. On the other hand, the extrinsic model with individual decoders are better for direct
shading and reflectance predictions and appears to differentiate intrinsic cues better. We also
provide additional qualitative results. First of all, we provide qualitative results of ShadingNet
with intrinsic modification (IM) and extrinsic modification (EM) for fine-grained shading com-
ponents. Provided results are from networks that use surface normal encoders. Figure 21 shows
visual results for cast shadow predictions, Figure 22 provides visual results for direct shading
predictions, and Figure 23 illustrates ambient light predictions.
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Figure 21: Qualitative results for cast shadow estimations. IM is for intrinsic modification, EM
is for extrinsic modification. Both models can differentiate shadow cues.

6.3.3 Influence of Fine-Grained Shading

In this experiment, we evaluate the influence of the photometric components (indirect light) of
the fine-grained shading term on the quality of intrinsic images. Following the promising results
of the extrinsic modification (individual decoders per output), we train different versions of the
ShadingNet architecture with modifications to the output decoder branches. First, we evaluate
the photometric effects (ei) as one unified component containing both ambient light (e+a ) and
cast shadows (e−a ). Second, we train the ShadingNet architecture with the multiplicative image
formation model of [17]. Both setups have 3 decoders; reflectance, direct shading (ed) and
composite indirect shading (ei). Then, we provide results of the proposed model by having
decoupled indirect shading terms. The results are summarized in Table 12.

MSE LMSE DSSIM
ei Albedo Shading Albedo Shading Albedo Shading

Multiplicative [17] 0.0057 0.0292 0.0791 0.6989 0.2195 0.3943
Coupled 0.0060 0.0083 0.0638 0.1810 0.2877 0.2743

Decoupled 0.0049 0.0049 0.0592 0.1157 0.2774 0.2732

Table 12: Influence of fine-grained shading with extrinsic modification (extra decoders).
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Figure 22: Qualitative results for direct shading estimations. IM is for intrinsic modification,
EM is for extrinsic modification. Both models can differentiate direct shading cues. EM is
closer to the ground-truth, while IM produce sharper results.

The results show that further decomposition of the indirect light (ei) into ambient light (e+a )
and cast shadows (e−a ) shows to have great benefits over the coupled versions in all metrics.
Further, our (additive) model yields better results than the (multiplicative) model of [17]. The
reason their shading estimates are too noisy is that their multiplicative modeling yields unstable
indirect shading values when direct shading values are very small. We do not further investigate
the issue as it is out of the scope of this work.

6.4 Synthetic Outdoor Images
In this section, we compare our method with the color version of Retinex [12] a threshold-based
traditional method, IIW [24] using optimization-based dense CRF, DirectIntrinsics [18] the
pioneering coarse-to-fine multi-scale CNN network, IntrinsicNet [19] a standard CNN for the
task with image formation loss and ShapeNet [8] with interconnections (all layers are connected
to promote correlation between components). Further, we train our final model including the
image formation loss (IMF), which also involves the shading formation process. All the models
are trained on the same dataset (NED). Table 13 shows the quantitative evaluation results (6000
images) and Figure 24 displays visual comparison results for NED. In addition, Table 14 shows
quantitative evaluation results (890 images) and for the MPI Sintel dataset. For MPI Sintel, we
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Figure 23: Qualitative results for ambient light estimations. IM is for intrinsic modification,
EM is for extrinsic modification. Both models can differentiate ambient light cues from other
photometric effects.

use surface normals generated by MarrRevisited [26].
Table 13 shows that our proposed models significantly outperforms other baselines on all

metrics on the synthetic garden dataset. Table 14 demonstrates the good generalization ability
of our models. Moreover, our models obtain better albedo results. For some metrics our models
are on par or slightly worse, yet they predict fine-grained shading intrinsics with the albedo.
Although (noisy) surface normals are estimated with an external network, it still helps to achieve
better results. In addition, we support the findings of [19] such that the IMF loss constrains
the model to obtain better results. Moreover, we show the contribution of colored shading by
training and testing our final model on gray-scale shading, see the last row of Table 13. It can
be derived that if the shading component is colored, it provides more cues to the decoders.
Further, Figure 24 shows that ShadingNet with extrinsic modification (extra decoders) with
surface normal encoder and image formation loss obtains better reflectance images. Moreover,
our models removes cast shadows and shading leakage is minimal in the reflectance images.

6.4.1 In-the-wild Real World Indoor Images

Our method is also evaluated on in-the-wild real world images of IIW [24]. The dataset includes
images of indoor scenes with complex lighting conditions. Figure 25 shows the performance of
ShadingNet for a number of images. Table 15 show the mean WHDR results for IIW (randomly
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MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

Color Retinex [12] 0.0114 0.0193 0.1204 0.2334 0.328 0.3515
IIW [24] 0.0095 0.0111 0.1343 0.1861 0.2098 0.3511

DirectIntrinsics [18] 0.0073 0.0065 0.1205 0.1798 0.3756 0.3843
IntrinsicNet [19] 0.0035 0.0037 0.0449 0.0791 0.2367 0.2110

ShapeNet [8] 0.0053 0.0050 0.0597 0.0910 0.2516 0.2186
ShadingNet (IM) 0.0048 0.0054 0.0585 0.1179 0.2757 0.3188
ShadingNet (EM) 0.0049 0.0049 0.0592 0.1157 0.2774 0.2732

ShadingNet (IM) + SN 0.0027 0.0048 0.0405 0.1211 0.1019 0.2361
ShadingNet (EM) + SN 0.0018 0.0029 0.0365 0.0890 0.0812 0.2200

ShadingNet (EM) + SN + IMF 0.0016 0.0023 0.0326 0.0840 0.0751 0.1109
ShadingNet (EM) + SN + IMF + GS 0.0027 0.0039 0.0407 0.1085 0.1010 0.2103

Table 13: Quantitative results for NED. SN denotes the model with surface normal encoder, IM
is for intrinsic modification, EM is for extrinsic modification, IMF is for image formation loss,
and GS is for gray-scale shading.

MSE LMSE DSSIM
Albedo Shading Albedo Shading Albedo Shading

Color Retinex [12] 0.0537 0.0617 0.0719 0.0665 0.2999 0.2646
IIW [24] 0.0371 0.0388 0.0720 0.0656 0.2673 0.2360

DirectIntrinsics [18] 0.0269 0.0315 0.0607 0.0943 0.3140 0.2895
IntrinsicNet [19] 0.0261 0.0334 0.0548 0.0627 0.2047 0.2112

ShapeNet [8] 0.0201 0.0371 0.0447 0.0767 0.2816 0.3132
ShadingNet (IM) 0.0207 0.0393 0.0459 0.0825 0.2711 0.2987
ShadingNet (EM) 0.0207 0.0393 0.0480 0.0960 0.2900 0.2465

ShadingNet (IM) + SN 0.0194 0.0300 0.0459 0.0656 0.2182 0.2277
ShadingNet (EM) + SN 0.0219 0.0314 0.0478 0.0665 0.2261 0.2010

ShadingNet (EM) + SN + IMF 0.0209 0.0297 0.0458 0.0706 0.2170 0.1956

Table 14: Quantitative results for Sintel. SN denotes the model with surface normal encoder,
IM is for intrinsic modification and EM is for extrinsic modification, and IMF is for image
formation loss.

picked 500 images). IIW dataset does not provide surface normals or depth data.
Figure 25 shows that despite the fact that our models are trained solely on synthetic outdoor

data with single light source, they can capture proper reflectance image with smoothed out light
effects. Table 15 shows that extrinsic modification is better than intrinsic modification and other
baselines that predict unified shading. Note that the dataset is extremely challenging and very
different from our settings as there are multiple light sources present in scenes that are also
close in range (not point distant). Finally, we did not observe any improvement when surface
normals are estimated by a network as in the case for IIW. The reason might be that, along
with the complex light setting, the surface normal characteristics of indoor and outdoor are
quite different. The current state-of-the-art method [27] of the dataset achieves 15% WHDR
performance by combining 3 indoor datasets (synthetic and real, including IIW itself) with 8
different loss functions specifically engineered for the problem. Moreover, they post-process
the results with a guided filter. On the other hand, we use a single outdoor synthetic dataset
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Figure 24: Results for the synthetic garden dataset. IM is for intrinsic modification, EM is for
extrinsic modification with surface normal encoder. Proposed models provide better reflectance
components. EM produce better reflectance images with minimal shadow leakage.

with a single reconstruction loss without any post processing or fine-tuning.

WHDR
DirectIntrinsics [18] 42 %

IntrinsicNet [19] 40 %
ShapeNet [8] 41 %

ShadingNet (IM) 43 %
ShadingNet (EM) 37 %

Table 15: Quantitative results for IIW. The lower the better for WHDR. SN denotes the
model with surface normal encoder, IM is for intrinsic modification and EM is for extrinsic
modification, and IMF is for image formation loss.

6.4.2 In-the-wild Real World Outdoor Images

Finally, our model is evaluated on real world garden images provided by the 3D Reconstruction
meets Semantics challenge [21] (Wageningen Trimbot test garden). The results are provided
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Figure 25: Reflectance prediction results for IIW dataset. Although our models are trained
solely on synthetic outdoor data with a single light source, they properly capture the reflectance
image.

in Figure 26. Results show that both intrinsic and extrinsic modifications can differentiate
photometric cues and the shadow leakage is minimal.

6.5 Conclusion
We proposed to separate shading into different photometric effects such as shading caused by
direct shading (object geometry) and indirect shading (shadows and ambient light) to improve
intrinsic image decomposition results. Two end-to-end supervised CNN models, ShadingNets,
were utilized to exploit the fine-grained shading model. Further, surface normals were consid-
ered as an input to the models and their contributions to the task were analyzed. The proposed
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models were evaluated on synthetic and real world in-the-wild images. The evaluation results
show that intrinsic image decomposition highly benefits from (1) surface normals as an input to
a CNN model and (2) the proposed fine-grained shading model. Our approaches outperform the
existing unified shading methods. Moreover, visual inspection shows that the proposed method
reduces the leakage of photometric effects in reflectance images.

Figure 26: Qualitative results on real world garden images. IM is for intrinsic modification,
EM is for extrinsic modification. EM produce better reflectance images with minimal shadow
leakage.

7 Conclusion
In this report, we have described the intrinsic image decomposition algorithms that are currently
used and developed as part of the Trimbot2020 project. We have shown algorithms based on
image gradients and physics-based image formation models, joint learning with semantic seg-
mentation, and fine-grained shading decompositions. All models can achieve proper intrinsic
image decomposition and can directly be generalized to real world garden scenes without any
fine-tuning.
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