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Abstract. This deliverable describes the revised design of the end-
effectors for bush trimming and rose cutting, as well as the vision modules
and control components for closed-loop bush trimming and rose cutting. The
motor that drives the revised bush trimmer tool is mounted on the 4th axis
of the robot arm and will be connected by a flexible shaft to the tool. This
results in a much lighter and smaller device. The length of the rose cutter
tool is reduced as well. For both end-effectors 3d printed housings have
been designed that allow a rigid mounting of the tool cameras. Current
accuracy issues in controlling the arm have been investigated and have
revealed that no mechanical deformation occurs when applying a load to the
arm. A difference between the commanded and actual poses of the arm was
however observed. To increase the accuracy of the arm control calibration
markers will be placed on the end-effectors that allow visual arm tracking
and pose estimation. The vision module for bush trimming will use the
tool-mounted stereo cameras for depth sensing and target shape fitting using
multiple camera poses. The vision module rose cutting will use the tool-
mounted stereo cameras for CNN based branch segmentation and bud eye
detection. From the full list of bud eye locations the desired cutting position
are selected. The closed loop trajectory control for bush trimming will apply
the concept of trajectory adaptation based on the observed trimming score.
The trajectory control for closed loop rose cutting will apply a reinforcement
learning algorithm as a visual servoing controller. This visual servo control
algorithm will process real-time images with the goal to minimise the
distance between the end-effector location and the target cutting location.
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1 Bush trimming end-effector V2

As described in D2.3 the version 1 bush cutter was designed, built and tested in the Trimbot2020
garden at several occasions and the results from those experiments led to new ideas and the
need for a revised version 2 of the bush cutter. For comparison the following table (Table 1) is
constructed to mark the differences between the two versions

Table 1: Comparison V1 and V2 Bush trimming end-effector

V1 V2
Motor control: Maxon motor servo control,

monitoring of speed and torque.
Cables needed for power, Hall
sensors and encoders

Speed controller, no monitoring
of parameters needed, less ca-
bling

Control: manual, using the Maxon mo-
tion library. Input of start and
stop by setting speed values

ROS, switches motor on and off

Motor: Maxon motor with encoder Maxon motor, no encoders
Cameras: mounted on a threaded rod and

aluminium structural profile
Mounted in a 3d printed housing

Camera
FPGA:

housed in 3D printed box sepa-
rated from cameras.

Mounted in a 3d printed housing
integrated with cameras

Tool: Motor mounted underneath the
tool

Motor mounted on the robot
arm, torque is transferred by
means of a flexible shaft

Motor control: during the design of the first version it was not clear how fast and with how
much torque the motor should operate to cut efficiently through 10 to 12 buxus branches at the
same time. During testing it became clear that the V1 was capable to cut through those branches
and the correct motor settings were found and could be fixed. In that way, feedback by means of
an encoder is not needed in V2. Next to that, this saves on the amount of cabling and therefore
weight (about 0.4 kilogram) which was a problem because of the limited payload of the Kinova
manipulator. The weight of the V2 tool itself will be around 0.8 kilogram, the V1 tool weighs
2.2 kilogram.

Control: in V1 the motor was controlled using a Maxon motor Windows application in which
the motor could be controlled by setting wanted speed setting values and torque limits. In V2,
an application in ROS is currently in development that runs in the state machine of the overall
robot system. ROS commands will start the sequence of starting and stopping the blades.

Tool: the motor in V1 was mounted underneath the cutting blades. This solution was chosen
because of its simplicity in mechanical design but during lab testing it became obvious that the
motor was in the way while cutting the lower parts of the bush. Furthermore, the weight of the
motor and especially the cabling needed for servo control proved to be too much. As a result
one of the DC motors of the Kinova arm was broken. To alleviate this problem the motor in V2
is mounted on the 4th axis of the manipulator. See Figure 2.
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Figure 1: Bush trimmer V1

This distributes the weight over the arm, makes the cutter smaller and less cables are needed to
control the motor. The downside is that a flexible shaft is needed between the motor and the
cutter head which still needs to be designed.

Cameras: the cameras were mounted on a structural aluminium profile which was susceptible
for misalignments and proved to be fragile. Next to that the FPGA was mounted in a separated
housing and cables were running from the camera to the housing being unprotected. For the V2
end-effector a new housing for the cameras and FPGA is designed and 3D printed. The housing
holds three pairs of stereo cameras as can be seen in Figure 3. This housing is jointly designed
by WR and ALUF.

To be able to improve the arm control by means of visual tracking (see section 4.4 for details)
one or several April markers will be placed on the end-effector. A possible April marker position
on the bush trimmer V2 is shown in Figure 4
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Figure 2: Bush trimmer V2

Figure 3: Bush trimmer V2 design camera placement
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Figure 4: Back of bush trimmer V2 with april tag calibration object.

Version 3.1; 2018–11–03 Page 6 of 29 c© TrimBot2020 Consortium, 2018



IST – 688007 – TrimBot2020 Deliverable D2.4

2 Rose cutting end-effector V2

As described in D 2.3 the version 1 Rose cutter was designed, built and tested in the Trim-
bot2020 garden at several occasions and the results from those experiments led to new ideas and
the need for a version 2 of the rose cutter. For comparison the following table is constructed to
mark the differences between the two versions:

Table 2: Comparison V1 and V2 rose cutting end-effector

V1 V2
Motor control: Maxon motor servo control,

monitoring of speed and torque.
Cables needed for power, Hall
sensors and encoders

Speed controller, no monitoring
of parameters needed, less ca-
bling

Control: manual, using the Maxon mo-
tion library. Input of start and
stop by setting encoder values

ROS, monitors on off switches
mounted in the cutter head

Motor: Maxon motor with encoder Maxon motor, no encoders
Cameras: mounted on a threaded rod and

aluminium structural profile
Mounted in a 3d printed housing

Camera
FPGA:

housed in 3D printed box sepa-
rated from cameras.

Mounted in a 3d printed housing
integrated with cameras

Tool: Cutter head mounted with some
flexibility on motor housing

Shorter motor housing, camera
housing mounted on tool

Motor control: during the design of the first version it was not clear how fast and with how
much torque the motor should operate to cut efficiently through a rose branch of maximum 12
mm. During testing it became clear that the V1 was capable to cut through those branches and
the correct motor settings were found and could be fixed. In that way, feedback by means of
an encoder is not needed in V2. Next to that, this saves on the amount of cabling and therefore
weight (about 0.4 kilogram) which was a problem because of the limited payload of the Kinova
manipulator.

Control: in V1 the motor was controlled using a Maxon motor Windows application in which
the motor could be controlled by setting wanted encoder values, speed and torque limits. In
V2, an application in ROS is currently in development that runs in the state machine of the
overall robot system. Two limit switches in the cutter head will monitor whether the knife is
fully opened or closed. ROS commands will start the sequence of closing and opening the knife
while monitoring the state of the two limit switches.

Cameras: the cameras were mounted on a structural aluminium profile which was susceptible
for misalignments and proved to be fragile. Next to that the FPGA was mounted in a separated
housing and cables were running from the camera to the housing being unprotected. In V2, a
new camera housing with integrated FPGA is designed where two stereo camera pairs can be
mounted with different base lengths. The housing is made weather proof by means of rubber
seals. The position of the cameras is chosen at the back of the tool where it is connected to
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Figure 5: Rose cutter V1

the robot arm. The right height and angle were found using SolidWorks by simulating the FOV
of the cameras and finding the right location to have as much of the rose bush in view while
maintaining a good sight at the cutter head. See pictures in Figure 9.

To be able to improve the arm control by means of visual tracking (see section 4.4 for details)
one or several April markers will be placed on the end-effector. A possible April marker position
on rose cutter V2 is shown in Figure 8.
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Figure 6: Rose cutter V2 rear view

Figure 7: Rose cutter V2 front view
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Figure 8: Back of rose cutter V2 with april tag calibration object.

Figure 9: Left side view of the simulated camera on top of the V2 rose cutter. Right; Simulated
camera view of the cutter head and the rose bush.
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3 Accuracy issues in controlling the Kinova Arm

To have accurate bush trimming, even when using visual servoing to correct for sensing errors,
it is required that the robot arm used has sufficient accuracy in its control, so that the desired
poses are also actually reached. From previous experiments and testing, including those for
deliverable 2.3, some issues with insufficient control accuracy where found. Especially during
calibration of the camera setup, it was found that there were large errors in the resulting calibra-
tion settings. It was expected that part of these errors originated from the behaviour/properties
of the Kinova Jaco robot arm, especially since the used tools were about to exceed the specifi-
cations of the arm. In this section, we will explain in more detail what has been investigated in
this respect, which results where found, and how this will be dealt with the continuation of the
research.

3.1 Accuracy evaluation

To evaluate the accuracy of the arm control and encoder readout, several checks and evaluation
actions were executed. These were:

• Checking the encoder response when applying external force or displacement on the arm.

• Test if pose commanded to the arm was actually reached.

• Test the effect of load on reaching the commanded pose.

• Test mechanical properties of the arm.

For the first test, the arm was set to a stretched pose, and an external force was applied to the
arm, by manually pushing / lifting the last links. At the same time, encoder readout (showing
the rotation of each joint in radians) was visualised to see if the encoder did measure these
displacements. It was observed that the encoders responded to even small pertubations of the
arm, with orientation changes smaller than 10e-6 being indicated properly. Furthermore, it
was found that the construction supporting the arm was rather flexible. To reduce this, first a
mechanical fixing by wooden blocks was used, which was replaced later on by an improved
mounting construction. As result of this step, it was concluded that given proper fixing of the
arm, the encoder data seem to be reliable for showing differences in arm poses. Not tested,
however, was whether these values did correspond accurately to the actual orientation of the
joints.

In the second step, it was investigated if the arm actually reached the poses that were com-
manded. For that, a pose command was issued to the arm, and the encoder readouts of the
resulting pose were logged. This was repeated over a wide range of arm configurations, also
the influence of arm configuration was included. From the results of this action, the difference
of expected and actual arm pose could be calculated and visualised as function of joint angles.
For controlling the arm, the built-in velocity controller was used, as using fixed-pose control
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is not suitable when desiring a moving arm that performs bush trimming. It was found that
especially for joint 2 and 3, clear deviations between commanded and actual pose occurred (see
also Figure 10. Without load, these differences could be as large as 0.01 radians, leading to a
difference in end effector pose of 10 mm (calculated using the kinematic model of the arm).
When including loads, maximum deviations increase to 0.017 for joint 2 and 0.007 for joint 3,
depending on arm pose. In another trial, the different inverse kinematic solutions were used to
reach the same position of the TCP in Cartesian space. From this, opposite offsets in joint angles
were observed. Resulting TCP positions had a variation of max 5 mm in the XY-plane, and 6-12
mm in the Z-plane, all being lower than the commanded TCP positions. Such deviations can
be explained by gravity, as the arm pose happened to almost always be lower than commanded,
and the largest impact of this could be observed on joints 2 and 3 which are mounting points
of the first and largest links that move in 3D space. Thus, it was concluded that the arm has
difficulty in properly correcting from the gravitation force.

Figure 10: Differences between commanded and actual arm poses
.

Next, in a similar fashion also the effect of adding load (the end-effector) to the arm was
investigated. For this, two configurations were tested: - link 2 pointing upwards and link
3 pointing forward - link 2 and 3 both pointing forward. This time, also absolute vertical
displacement was measured by attaching a laser pointer to the arm, which projected a cross on
the wall. By measuring the (downward) displacement of the cross after attaching a load as well
as after manually displacing (lifting) the arm, the offsets could be determined. Also encoder
readouts in radians were registered. Measurements here were not highly accurate, but provided
values within a few mm’s accuracy. In this way, also possible mechanical bending of the arm
could be detected, as this would lead to the joint rotations to be different from the measured
displacement. Results of this are given in table 3. Checking the observed displacements with
the measured joint rotations (including the kinematic model of the robot), showed that these
displacements were accurately reflected in the encoder readings and joint rotations. From this,
it can be expected that the readings of the arm encoders properly reflect the arm pose.
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Table 3: Measured offsets when applying load

original, with-
out tool

with tool after tool re-
moval

Configuration 1 (joint 2
rotation in radians):

1.622 1.618 1.621

Configuration 1
(displacement in mm):

0 7 3

Configuration 2 (joint 2
rotation in radians):

4.718 4.724 4.720

Configuration 2 (joint 3
rotation in radians):

3.137 3.134 3.136

Configuration 2
(displacement in mm):

0 12.5 3

Finally, it was checked if any fixed / static mechanical bending of the arm could be observed,
possibly as result of deformation by previous overload of the arm. Visual inspection did not
show any visual deviations (larger than a few mm between joint ends) in the major links. Also
reflectance of linear objects in the arm body did not indicate deformations of the arm.

3.2 Conclusions of the tests so far

• Fixing the arm support improved reliability of control;

• No mechanical bending / deformation is observed when applying a load to the arm;

• Encoders seem to properly reflect changes in arm pose;

• There is a difference between the commanded and actual poses of the arm;

• Arm control has limited capability to correct for gravitational influences on arm pose,
such that commanded pose is reached only within limits;

• Observed errors seem to fit within specifications of Kinova Jaco arm:

– 15 mm absolute precision in arm positioning;

– 4-5 mm repeatability of arm positioning;

• Not evaluated is the absolute 3D difference between commanded and actual pose, for
example as result of inconsistencies in encoder mounting / calibration. As result, for
example, it is unclear if a reported horizontal arm pose is actually horizontal, or if there
is a small offset. Although this has no direct effect on arm control accuracy, it might be
relevant when relating arm / TCP position to other objects in the world.
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3.3 Proposed improvements

For dealing with the inaccuracies of arm control, various approaches are proposed, which will
be pursued in parallel:

• Adding additional pose estimator on arm (DeepTAM from ALUF) to externally estimate
arm pose.

• Add an offset to the control commands, such that the gravitational errors are largely
corrected.

• Investigate the options for an improved control method. e.g. by including I-term in
controller so gravity will be compensated better.

For the first option, external estimation of the arm pose, the DeepTAM algorithm of ALUF will
be used. Two additional wide-view cameras are included to the bush trimmer camera module
for this purpose, so the behaviour of the arm in 3D can be properly tracked. As this module also
needs proper initialisation, the arm will start from a low pose, such that the base cameras can
be used to provide an initial position using April markers on the camera module. In Figure 4
and Figure 8 first design ideas are given on where to place such a marker. Alternatively, inputs
from the arm encoders might be used.

For the second option, the difference between command and actual pose will be estimated for
a large range of poses. By fitting a model on this data, a correction for gravitational influences
can be added to the commands for the arm, such that the actual pose corresponds better to the
desired arm pose from the path planning module. For this purpose a calibration with the tool
mounted on the arm needs to be carried out. As the two different tools (bush trimmer and rose
cutter) are different in weight, tool specific calibrations need to take place.

For the third option, it will be investigated if the arm velocity controller can be improved by
adding an I-term that compensates for gravitational influences. This approach concerns a are
more fundamental solution to the problem, but might require more effort to have it functioning
properly.

Other ideas that might require attention:

• For more static testing or applications (possibly including rose cutting), using more forced
position control might be a suitable way to go. For bush trimming, which requires a
continuously and smooth moving arm, this is not applicable

• Investigation of camera calibration accuracy given the new knowledge on robot arm
accuracies, to see if this is already improved, or if other issues are still present here.
This should include the accuracy of the camera calibration itself and the influence of joint
angle offsets.

-
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4 Vision module for bush trimming

This section describes the vision module that takes raw visual perception data and and generates
a target object for the bush trimming planning module. Specifically, this module provides
information about where the object-to-be-cut is located; the planning module then takes care
of how this is done.

4.1 Module task

The bush trimming vision module operates after the robot platform has navigated to a trimming
target and stabilized its own position. This module’s tasks are to (a) perceive the 3D environ-
ment around the target bush, (b) identify the target and (c) produce a target shape which is sent
to the arm motion planning module for further processing. The target shape is parameterized as
a fine triangle mesh.

4.2 Depth sensing

Depth sensing is done using a tool-mounted stereo camera and a neural network which estimates
a disparity map for two rectified stereo images (see Fig. 11). For the neural network, we use
an advanced version [3] of the DispNet approach [5], trained on synthetic data. Assuming
a calibrated camera setup, the disparity map is easily converted into a depth map. For more
details, we refer the reader to the deliverable documents D5.1 and D2.2.

4.3 Target fitting

The module has access to information about the type of the target bush (i.e. whether it is
spherical, cubical etc.) and its approximate size. This information is used to generate an ideal
target shape in the form of an unstructured point cloud.

Once the robot has arrived at a trimming target bush, the arm performs a scanning motion during
which camera and depth data are collected and fused into a pointcloud representation of the
observed scene. The ideal target shape is then fit into the scene data using an Iterative Closest
Point (ICP) method. The scanning process is pre-planned to cover a range of viewpoints, and is
not controlled by the vision module.

The deliverable document D2.2 describes an earlier version of the fitting method in which only
a single camera pose’s depth data was used to fit a target shape. This tends to fail for bushes
that are significantly overgrown or whose general shape does not conform well to the desired
target shape.
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Figure 11: left to right, top to bottom: input stereo pair (rectified); consistency-filtered disparity
map; reprojected model fit.

4.4 Visual tracking

The robot arm used in the project is lightweight and relatively affordable, but it is also less
rigid and accurate than an all-metal industrial model. This holds especially in the low-level arm
control, which has difficulty to account for gravitational influences. Especially when a heavy
tool load is attached, this leads to the actual arm /tool pose to deviate from the commanded pose
(see section 3). Although part of these errors can be corrected, for example by adding an offset
to the desired pose that accounts for the gravitational displacement, this still can lead to errors
in perception, planning and execution. Especially for trimming evaluation, it is critical that the
pre-trimming viewpoint can be reproduced after trimming.

Pointcloud alignment can help reduce the error (see Fig. 13), but it is costly and does not account
for the error modes in the depth estimates. Directly tracking using the camera data promises to
be more robust.

We are adapting the visual tracking component from DeepTAM [9] to work on depth maps
from the disparity estimation component (see Sec. 4.2). This module uses the arm controller’s
pose data as initialization. Using video data from the arm cameras, it then refines the cameras’
positions (and by extension that of the end effector).
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Figure 12: top row: multiple views of partial 3D reconstructions from (single view) disparity
map (see Fig. 11). Bottom row: Same as top row, with added model fit visualization.

5 Vision module for rose cutting

This section describes the perception process required for the rose pruning task. The desired
actions of the robot to prune a rose are cutting thin branches and branches just above the bud
eyes. Thus, the existence of a branch, its diameter, and buds have to be detected. The detection
is performed in two main steps: branch segmentation and bud eye detection, which will be
developed further in the following sections.

5.1 Branch segmentation

First of all, we have to locate the branches of the desired rose bush and obtain their morphology.
In Figure 14 we introduce a general workflow for this process.

The workflow consists of segmenting the existing branches of two images captured by a stereo
camera using two CNNs. Then, we use the segmented regions as a masks to cover the parts of
the images that do not contain a branch. The masked images are used to obtain a normalized
depth map of the left camera. The depth map, the color image, and the mask are used to obtain
the skeleton of the bush, the branch divisions, and branch width. A detailed explanation for the
segmentation can be found in Section 5.1.1. Section 5.1.2 will describe the network that will be
used to find the depth map. Section 5.1.3 will explain the methods used in the post-processing
block. Finally, we will describe the synthetic dataset that will be used to train the CNNs in
Section 5.1.4.
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naive pointcloud fusion ICP-aligned fusion

Figure 13: side (top row) and front (bottom row) views of of pointclouds collected over ca.
90 seconds of camera motion. Using only the arm controller’s pose data (left column) leads
to significant misalignment between the individual views which makes extracing a target shape
infeasible. ICP alignment before each frame’s fusion preserves the shape better, but this is
relatively slow, and hindered by imperfect depth information. Alignment trom tracking could
be faster and more robust.

5.1.1 Segmentation

We use an encoder-decoder like CNN architecture [1] with residual connections to segment the
branches in an image. This CNN is used to segment the images captured by the stereo camera,
one CNN per camera. The output is a binary image which indicates whether or not pixels
belongs to the branch or to the background. The CNN is trained using the synthetic dataset
described in Section 5.1.4 and fine-tuned with a real dataset. Figure 15 shows an example of
the training images.

5.1.2 Depth map

The output of the CNN is combined with the images captured by the stereo camera as a mask,
as explained in previous paragraphs. Then, the masked images are used as input to an encoder-
decoder like CNN. The output of the network is a normalized depth map of the image captured
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Figure 14: Branch segmentation workflow.

by the left camera. The network is trained following a similar procedure to the previous section.
An example of depth images used for the training can be found in Figure 15b.

5.1.3 Post-processing

The segmented depth maps are further post-processed to output a skeleton of the bush (Figure
15d), the diameter of the branches and the nodes of the bush in 2D using the mask and depth
obtained by the CNNs. Skeletonization of the bush is a morphological operation that transforms
segmented branches into their medial axes, which are assumed to represent the branching
topology. Because we want to capture the branching topology better, we do not skeletonize the
segmented mask that was found by the CNN. In that case some partially overlapped branches
might be reduced to a single skeleton, losing in this way the existence of some branches. Instead,
we create a segmented image more suitable for the skeletonization by adding the edges of the
plant, obtained by the magnitude of the gradients of the depth map, to our segmented mask.

To find the nodes of the bush, we use the skeleton of the bush and a depth-first search algorithm.
It determines if a pixel in the skeleton is a node or a branch by observing its neighborhood. If
it has more than two neighbors, the pixel is labeled as a node. It also makes a directed graph
between the nodes and the edges that are connected to it, so we can track a branch to its origin
at the bottom of the image.

The diameter of the branches is found using the Hough lines transform and the mask created
using the depth map. The process is the following: First, we use the Hough lines transform to
find lines using the skeleton of the plant. Then, we grow lines perpendicular to the lines found
by Hough until they reach the borders of the mask. Because the mask delimits the region of
each branch, each perpendicular line ends up being the diameter of a branch in 2D. We can
easily find the diameter in 3D by using the stereo camera intrinsics.

5.1.4 Dataset

Using the 3D creation software blender, we generated 2880 image pairs of synthetic rose bushes
with the following characteristics:

• 36 different rose bushes (Figure 16),
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• 4 different environments, 9 bushes per environment,

• 80 image pairs (Figure 15a),

• depth map (Figure 15b),

• pixel-wise segmentation (Figure 15c),

• plant skeleton (Figure 15d).

An example of the dataset can be found in Figure 15 and an example of the 4 environments in
Figure 16.

a) color image b) depth map c) segmentation d) skeleton

Figure 15: Synthetic dataset example. Top row shows the left camera view and the bottom
shows the right camera view.

a) b)

c) d)

Figure 16: Different environments in our synthetic dataset.
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5.2 Bud eye detection

We detect the bud eyes using a CNN with an architecture similar to YOLO [7]. The output of
the CNN is a grid cell where each cell indicates the probability of the existence of a bud-eye
and a bounding box, as seen in Figure 17. The detection is performed in 2D, however, we can
easily find the location of the object in 3D wrt. to camera by using the stereo camera intrinsics.
Thus, the final result of this step is a list with the 3D locations of all bud eyes where cutting
might take place.

Figure 17: Bud eye detection.

5.3 Bud eye selection / determination of cutting locations

The result of the previous step is a list of all bud eyes locations that are potential cutting
locations. As result, a single branch can feature multiple bud eyes, while on each branch,
preferably a single cut is made. Some additional selection is needed to reduce the full list of
bud eyes found to a set of bud eyes that actually are determined as cutting locations. Several
approached exist for this:

1. Manually indicating the bud eye to determine the location that should be cut

2. Selecting only the lowest bud eye on each branch

3. Including plant and gardening knowledge to determine at which bud eye the branch
should be cut.

For the first tests, method 1 will be used, by simply selecting the bud eye locations to be cut /
taking out all other bud eyes. The final Trimbot2020 system, however, should implement more
advanced methods as it is what is actually desired and also used by gardeners.
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6 Trajectory control for bush trimming

In the current implementation of the autonomous trimming system for TrimBot2020, the target
bush is scanned once, a coverage trajectory plan is computed based on the acquired 3D data, and
then such trajectory is executed a number of times in order to cover the whole plant. A rotation
table is exploited to allow the arm to reach every side of the bush (check Deliverable 2.3 for
a detailed description). This stationary setup can be naturally extended to a mobile system by
computing a set of robot base poses that allow to cover the plant, and allowing the robot to
reposition itself with respect to the bush frame.

6.1 Issues with open-loop trimming

Repeating the same trajectory on multiple plant sides would make sense if the originally ac-
quired target shape model were reliable in terms of position and size, and if the motion execution
carried out during the first run had displayed a satisfying cutting behaviour. Both conditions are
actually not guaranteed: several sources of errors may make the computed trajectory totally
inadequate for the task. Repeating such trajectory would symmetrically spread the errors
introduced by the initial run. For instance, if the acquired bush model has been fitted with a
translation error, the robot may cut too deeply only on one side of the plant. But by rotating the
plant and repeating the motion, the plant would be cut too deeply everywhere. Passing from a
stationary to a mobile manipulator would introduce further uncertainties.

6.2 Adaptive trimming concept

If an attempted trimming trajectory turns out to be unsuitable for the task, it should not be
repeated. This leads to two main questions: 1) how to evaluate the quality of a trimming task on
the plant portion involved in trimming, 2) how to produce a new trajectory plan that is likely to
result in a better trimming behaviour in case the perceived trimming quality was unsatisfactory.
This section focuses on the second question. One possible idea to tackle the first issue is to
exploit a silhouette-based bush profile evaluation system, by limiting it only to the angular
range interested by the trimming plan (which can be estimated beforehand).

It is reasonable that a better performing trajectory can be estimated from the initially computed
one, i.e. the arm trajectory spanned an area that is somehow correlated to the real target bound-
ary. Thus, the trimming planning module should be adaptive, and able to gather information
about how well we trimmed. So the error between the trimmed profile and the desired profile
has to be mapped to a perturbation in the trajectory plan. The idea is to update trajectories
according to some reasonable interpretation of the trimming effect (e.g. inflate the target set of
patches if too much deep cut is detected, shift the poses if the trimming effect is shown only on
one side).

Thus, we want to exploit the sensed knowledge of how we performed our trimming task to warp
an existing trajectory plan. We also consider the opportunity to exploit all the experience we
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acquired about previous trimming trajectories to produce new trajectories for new scenarios.
This would be closed-loop among different trimming operations. It may take a lot of exemplar
runs to perform proper parameters learning, but the mechanism will be flexible enough to adapt
autonomously to modifications in the trimming settings.

In Figure 18, a diagram of the proposed trajectory update system is shown.

Figure 18: Concept of trajectory adaptation system based on observed trimming score.
.

6.3 Implementation

In this section the system used to perform trimming result-based plan adaptation is described.
The algorithm is based on a Reinforcement Learning approach called Policy Improvement with
Path Integrals (PI2) [8].

6.3.1 PI2 framework

The trimming task is modeled as a dynamical system of the form:

ẋt = f(xt, t) +G(xt)(θt + εt) (1)

where x, is the system state (i.e. the arm configuration at each time step), f(xt, t) is the passive
dynamics, G(xt) is the control transition matrix, θt is the control input at each time step, and ε
is Gaussian noise.

The policy parameters vector θ consists of a time-discretized sequence of arm configurations
composing the desired trajectory. The considered dynamical system instantiation is a propor-
tional control to track the discretized trajectory:
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ẋt = K(gT
t (θ + ε)− xt) (2)

where gt contains 1 at index t and 0 at all other indices.

The state-dependent cost to be optimized has the form:

rt = qx(x, t) +
1

2
θT
t Rθt (3)

where qx is an arbitrary state-based cost function and R is a matrix to control the generated
policy complexity (see section 6.3.2)

The total cost of a trajectory is given by the sum of the rewards at each time step, plus a terminal
cost φtN representing the observed task quality at the end (see section 6.3.3):

S(τ) =
N−1∑
i=1

rti + φtN (4)

To optimize the policy parameters θ, PI2 explores feasible trajectories that improve the cost
through iterations. In the following the pseudocode of one iteration of the procedure is reported.

• Create K rollouts of the system from the same start state using stochastic parameters
θ + εt at every time step;

• For k = 1...K, and time-steps i = 1...N , compute the state-based cost S(τi,k). The
perturbation εt is projected under the metric R−1, thus binding the explored trajectories
(see Section 6.3.2 for details on R).

Mti =
R−1gtig

T
ti

gT
tiR

−1gti
(5)

S(τi,k) = φtN ,k +
N−1∑
j=i

qtj ,k +
1

2

N−1∑
j=1

(θ +Mtjεtj)
TR(θ +Mtjεtj) (6)

• The state-based costs for each trajectory are used to compute the contribution P (τi,k) that
a given trajectory provides to the policy update. Such contribution is defined as exponen-
tially lower for higher costs, so that only low-cost trajectories significantly contribute to
the policy update.

P (τi,k) =
e−

1
λ
S(τi,k)∑K

j=1 e
− 1
λ
S(τi,j)

(7)

• For time-steps i = 1...N , compute

δθti =
K∑
k=1

P (τi,k)Mti,kεti,k (8)
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6.3.2 Control complexity cost

The main issue when using the proposed policy representation is that adding noise directly to
a discretized trajectory is likely to make the perturbed trajectory jerky and difficult to execute
on a real robot. For this reason, a control jerkiness-dependent cost is added to the task-based
trajectory cost, via the quadratic cost matrix R.

Analogously to other works on motion plan optimization like [4, 2] the control matrix is defined
as a weighted sum of difference matrices of order d:

R =
D∑
d=1

wd‖Ad‖2 (9)

To make the control cost θT
t Rθt equal to the sum of squared accelerations along the trajectory,

the difference matrix of second order A2 is used:

A2 =



1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

. . . ... . . .
0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1


(10)

6.3.3 Trimming outcome-based rewards

The trimming outcome-based reward functions are:

• Percentage of the target surface covered by trimming (see definition of Trimming Perfor-
mance in Deliverable 2.3)

• Trimming accuracy (i.e. how well the trimmed profile falls within an acceptability ring
around the target shape, see definition in Deliverable 2.3)

• Smoothness of the trimming error (i.e. how regular is the deviation between the trimmed
profile and the target profile)
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Figure 19: Trajectory control workflow by visual servoing.

7 Trajectory control for rose cutting

This section describes the trajectory control for the rose cutting task. The goal of this task is
to make the robot cut rose bushes according to the best practices for seasonal rose pruning, for
example branches slightly above a bud eye and weak (thin) branches. Here, we use a calibrated
stereo camera mounted on the end-effector of a robotic arm (eye-in-hand); the end-effector is a
cutting tool. This task can be modeled as a grasping problem so we can use a visual servoing
approach to get close to the branches. In figure 19 we can observe a general workflow of the
steps necessary to perform the visual servoing.

The workflow starts with the branch segmentation and bud eye detector steps, which were
covered in the visual module for rose cutting (Section 5). The outputs of these two steps are
points in 2D that show which part of the branches should be cut. The 2D clip locations together
with the intrinsics of the stereo camera are used to find the corresponding locations in the 3D
coordinate system of the camera.

All detected locations are queued and sequentially sent to the control module, one by one in a
top-down, left to right order, to make it easier for the robot to cut the branches of the bush. We
cut the external branches first, and then go deeper. To cut a branch slightly above an eye-bud,
we send the location of the eye-bud plus a fixed distance (2 cm) above it along the branch as the
target for the servoing mechanism.

For each received clipping site the visual servoing algorithm outputs a visual-motor policy that
allows the robot arm to move from its initial position to the desired part of the branch to cut it.
Once it reaches the desired pose, we rotate the end-effector 45◦and cut the branch by actuating
the clipper. Subsequently the clipper is opened to release the branch, the arm returns to its initial
position outside of bush, and the process repeats.

To cut the branches that are thin, we use the diameters that the branch detector measures. From
the stereo camera we can obtain the real diameter of the plant using the relative 2D diameter
found by our algorithm. If it is smaller than a threshold, we send the location of the base of the
segmented branch as the point to be cut. Once all branches reachable from the current robot
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location are cut, the robot will move around the rose bush in clock-wise direction, keeping a
constant distance from it.

In the following section we describe in more detail the visual servoing method to control the
robot.

7.1 Visual servoing

The visual servoing control idea for the Trimbot2020 project is to use a reinforcement learning
algorithm, more specifically, an Asynchronous Advantage Actor-Critic (A3C) [6] as a visual
servoing controller. At the time writing this deliverable this algorithm is still under develop-
ment.

Reinforcement learning (RL) algorithms learn an optimal policy to solve a task by trial and
error and is usually used when a task is difficult to model or has infinite possible states. The
main components of an RL are the states of the environment, the reward received after making
an action, and the action itself. The RL algorithms can be classified in three categories: policy
based, value based, and actor-critic methods, which combine both previous methods and gener-
ally perform better than the other two. A3C as an actor-critic algorithm updates its policy with
the help of learned state-value functions. However, A3C uses so-called advantage function,
which measures the advantage of taking action a, over following the policy π at the given time
step t, to improve the result. A3C also asynchronously executes different agents in parallel on
multiple instances of the environment and updates to a master network after t time steps.

In practice, an A3C is useful for visual control because it uses recurrent neural networks to learn
temporal dependencies and visual cues. This guides the robot to make correct movements to-
wards the target and achieve successful grasping (cutting) based on past states. The architecture
of an A3C is shown in Figure 20.

Figure 20: A3C architecture. It receives an image and other useful information of the robot as
input or current state xt. Then, xt is encoded by a CNN (red block). Finally, the encoded vector
is sent to a RNN (green block). The output of the network is a policy π and the value function
V .

In our problem, the policy π will be the optimal action (joint movement) the robot has to follow
to cut a branch and the value function V will be the expected value of following policy π when
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the robot is in the state xt. Now we will define the three components: state, actions, and rewards
of our algorithm.

State xt

• 6 DoF Joint values,

• 3D Cartesian end-effector location,

• Distances between the end-effector location and locations of all joints (to avoid self-
collision),

• Distance between the current end-effector location and the target location,

• RGB-D images.

Action π

• Joint angle movement (6 degrees of freedom).

Reward

• Negative reward:

– Time from the start of the action,

– Distance between the end-effector location and the target location,

– Hit an obstacle,

– Hit itself.

• Positive reward:

– Reach the target (terminate).
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