IST — 688007, — TrimBot2020 Deliverable D1.2

European
Commission

TrimBot2020 Deliverable D1.2

Platform 2: Supports online operation for demonstrator 1

Principal Author: BOSCH

Contributors: BOSCH, UEDIN
Dissemination: CO
Abstract: This document presents the extensions necessary to

implement online operation for platform 2. Therefore, the previously
used hardware of platform 1 has to be changed regarding the network
configuration and the camera setup. Additionally to these changes a wheel
based odometry capability is added to the vehicle. The software architecture
needed for the online operation is also presented in this document. In this
regard, the software packages for the cameras and the Semantic SLAM
are only briefly introduced, while the user interface (GardenUI) and the
navigation components, in particular the state machines, are described in
more detail.

Deliverable due: Month 18

Version 1.0; 2017-06-30 Page 1 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

1 Introduction

Platform 2 extends the previous platform 1 with online operation and navigation features. This
is needed for the first Trimbot demo, which is about vehicle navigation. Platform 1, presented
in D6.1 (First integrated platform), is therefore extended by a Wifi network router to establish
a connection between the vehicle and a remote laptop. The remote laptop is used to run the
graphical user interface (GUI) which controls the online operation. Figure [I| shows the remote
laptop and the vehicle of platform 2 during an online operation in the test garden in Renningen.
A detailed description of the hardware setup for platform 2 is given in Section[2] An overview of
the software architecture used for the online operation is presented in Section 3] As previously
defined the software is based on the Robot Operating System (ROS) and therefore all interfaces
are implemented as ROS messages.

Figure 1: Online operation of the platform 2 vehicle with remote Laptop in the test garden in
Renningen. The GUI on the remote laptop is used to set destinations for the vehicle navigation.

2 Hardware Setup

The hardware setup for the platform 2 vehicle is nearly the same as for the platform 1. It is
based on the same modified BOSCH Indego lawn mower with the same aluminium frame. In
contrast to platform 1 the aluminium frame of platform 2 is able to carry an additional onboard
laptop for SLAM and a Wifi router for the network connection. The sensor setup is, apart
from the cameras, the same as for platform 1. For this reason, only the new camera setup is
presented in the following, and all other sensors and their integration are described in D6.1
(First Integrated Platform). Figure [2] shows the platform 2 vehicle with the new camera setup,
embedded PC, Wifi router and the space for an onboard Laptop. For the online operation the
vehicle is also extended by odometry. However, the sensors for the odometry are inside the
lawn mower and can therefore not been seen in Figure 2] The network configuration with the
Wifi router allows to control the vehicle from a remote laptop. Both the vehicle odometry and
the network configuration are presented in more detail in the following.

Version 1.0; 2017-06-30 Page 2 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

Figure 2: The vehicle for platform 2 with the new camera setup (blue), the Wifi router (green),
space for an onboard Laptop (red) and the embedded PC (orange).

2.1 Vehicle Odometry

Information about the vehicle’s position and orientation is indispensable for navigation tasks.
For platform 2 the position of the vehicle w.r.t. the garden map will be provided by the visual
SLAM from workpackage three and is therefore only briefly introduced in Section [3.2] To
support the SLAM algorithm a wheel based odomentry is implemented on the vehicle itself.
This odometry is based on the differential drive setup of the Indego lawn mower with integrated
wheel encoders for each wheel. With these encoders the distances travelled by the two wheels
d,, d; are measured at fixed time intervals (¢ — 1,¢). Based on these measurements the travelled
distance for the vehicle center d. is calculated by:

d, + d;
= 1
5 (1)

With the assumption that for small values of z, the result of sin(z) is approximately the same
as x, the orientation change ® of the vehicle within small time interval can be calculated by

d, — d;
="
b

de

2)

Version 1.0; 2017-06-30 Page 3 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

where b is the baseline between the two wheels. For dead reckoning the orientation change and
the travelled distance are integrated over time by:

Ot)=0@t—-1)+ (3)
x(t) = x(t — 1) + d. * cos(O(t)) 4)
y(t) = y(t — 1) + de * sin(O(t)) (5)

where x(t) and y(t) are the position and O(t) is the orientation of the vehicle at time ¢ w.r.t.
the vehicle’s start location. The dead reckoning position will be refined by the visual position
derived from the SLAM system.

2.2 Vehicle Cameras

At the project meeting in Freiburg (16. - 17.1.2017), the decision was made that the previously
used camera ring consisting of 8 cameras should be replaced by a pentagon with 5 stereo camera
pairs. This new setup will now be used for the platform 2 and also for the final demonstrator
platform 3. Figure [3 shows the new camera setup with five stereo camera pairs. A camera
housing for this pentagonal setup was built by the project partner from WR. Figure 4] shows this
new housing.

cam_0 cam_1

(0@0 \/’ »

Figure 3: Schematic of the camera setup with five stereo camera pairs. Left: Schematic of the
stereo visibility. Right: Detailed camera arrangement.

2.3 Network for Online Operation

For the online operation a continuous connection between the remote laptop and the vehicle
with embedded PC and onboard laptop is necessary to send user commands to the vehicle.
Therefore, a Wifi network is established using a Wifi router on the vehicle. This configuration
with the Wifi router on the vehicle allows to have the same network configuration anywhere.

Version 1.0; 2017-06-30 Page 4 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

Figure 4: Housing for the pentagon camera setup.

Thus, platform 2 can either be used in the test garden in Wageningen or in the test garden in
Renningen without changing the network configuration. The embedded PC and the onboard
laptop are connected via Ethernet to the router and the remote Laptop is connected via Wifi.
The embedded PC will be the ROS master and has therefore a static IP of 192.168.33.10. To
establish a ROS communication between several machines the IP address of the ROS master
has as to be set as environment variable ROS_MASTER_URI. Therefore, the IP and the ROS
port from the embedded PC has to be set as ROS_MASTER_URT on the onboard laptop and the
remote laptop. Further the own IP address has to be set as ROS__IP on all machines.

export ROS_MASTER_URI=http://191.168.33.10:11311
export ROS_IP=http://191.168.33.XX

3 Software Architecture

The software architecture for online operation of platform 2 includes four software packages:
Camera, SLAM, SketchMap and Navigation. The interfaces between these packages are defined
as ROS messages. An overview of the software architecture including all the packages and the
messages used for the communication between the packages is shown in Figure[5| Each package
encapsulates the software parts from one partner and can therefore contain several components.
The messages used within a package are not included in the overview, since they are only used
by one partner and are therefore handled by that partner themselves.

Version 1.0; 2017-06-30 Page 5 of © TrimBot2020 Consortium, 2016

(' UOISIOA

3

0€-90-L10¢

ﬁ Jo 9 a8eq

910¢ ‘wnniosuo) Oz0IoguiL, @

“/vehicle_cam/cam|0 .. 9]/camera_info"
sensor_msgs/Cameralnfo

Capture
(uvc_camera)

“/vehicle_cam/cam_[0 .. 9]/image_raw"

sensor_msgs/Image “map -> odom”

tf/tfMessages

“/vehicle_cam/cam(0 2 4 6 8]/image_depth”
sensor_msgs/Image

Camera “/slam/pose”

Master-State-
Machine

Calibration

geometry_msgs/PoseStamped

“/vehicle_cam/cam[0 2 4 6 8]/image_rect”
sensor_msgs/Image

“/vehicle_cam/cam[0 1]/imu*“
sensor_msgs/Imu

“/slam/map".

Navigation
Planning

“/garden_ui/cancel_goal”
std_msgs/Bool

“/garden_ui/simple_goal” NEVigatAion
geometry_msgs/PoseStamped Execution

“/garden_ui/goal_object”
trimbot_msgs/GardenObject

nav_msgs/OccupancyGrid

“/registration/map_objects”

“/garden_ui/goal_objects” Vehicle Base “/indego/imu*
trimbot_msgs/GardenObjects (indego) sensor_msgs/Imu

Registration

“/garden_ui/map“ “/indego/odom*
nav_msgs/OccupancyGrid nav_msgs/Odometry

“/registration/map_objects”
trimbot_msgs/MapObjects

trimbot_msgs/MapObjects

“/indego/imu”

sensor_msgs/Imu

“/indego/odom*

nav_msgs/Odometry

Figure 5: Overview of the software architecture for platform 2.

0z0goguILL, - *£00889 — LST

7' 1A AIqERAIRA

IST — 688007, — TrimBot2020 Deliverable D1.2

3.1 Camera

The camera package includes the camera calibration and the camera driver (uvc_camera).
The stereo image processing is done on the camera itself. For this stereo processing a calibration
file with all the camera parameters is needed. This file is generated by the camera calibration
component and loaded to the cameras by the uvc_camera driver. The uvc_camera driver
also provides the raw image stream and the camera info for the each camera. On each camera
pair the left camera provides a colour image and the right camera provides a grey scale image.
For the colour images the rectified image is also provided by the camera driver. Additionally,
to these images the depth image for each camera pair is provided.

3.2 Semantic SLAM

Semantic SLAM is part of workpackage three and therefore documented in detail in the deliver-
ables of workpackage three. In this document only the function of Semantic SLAM with regard
to online operation and navigation is briefly described. The Sematic SLAM package is used to
process input from cameras and build a map of the environment and localise the robot w.r.t. this
map. The main product of the SLAM algorithm is a 3D point cloud where points are associated
with image descriptors. However, to support the navigation task it also generates an occupancy
grid to communicate the positions of static obstacles in addition. The SLAM algorithm also
provides the position of the robot w.r.t. the map as a 3D pose. The global coordinate system
used for the robot localisation is given by the map and the derived 2D occupancy grid. The
scale is given by camera calibration and results in approximately metrical (world) units.

3.3 Sketch Map

©© & TrimBot2020 GardenUl

EEE EEIEEY IR RN R ERE T B -
Map Properties
1 — DX RX
6 |
0.4 0
A DY RY
2+ 0.4 0
oL DZ RZ
0.4 0
2k |
|~ X
4l ’7
3.19
6 oe ¥
Al . i 5.95
z
10+
-0.0157
|12 0 _____—ﬂf T | | (=B
| Updat
| 5 0 5 10 15 20 25 z _Update |

Figure 6: Garden User Interface. Magenta line: sequence of objects selected for trimming. Blue
markers: control points of the surface mesh.

Version 1.0; 2017-06-30 Page 7 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

The Garden User Interface (GardenUTI) allows an user to specify a 2.5D semantic sketch
map of a garden (Figure [f)). The sketch map has two main parts, the terrain represented by a
mesh surface and a set of objects represented with primitive shapes (cube, sphere, etc.). Every
segment of the terrain and every object has attached a semantic label (grass, hedge, topiary etc.).
See D7.4 - Ground-truth data definitions and acquisition for complete list of semantic labels
and their color coding.

The sketch map must be initially registered to the SLAM map in order to issue correct
coordinates for navigation. Currently the registration transform is rigid because the sketch map
is drawn with the help of metric measurements from the garden plan. A later version will allow
less accurate initial sketch maps that will be subsequently refined by deformable registration
with the sketch map.

£
Figure 7: Occupancy grid for navigation. White: free space. Magenta: obstacles from SLAM.
Green: obstacles from sketch map. Grey: unseen space.

The Register map button retrieves the current 2D occupancy grid from SLAM and
computes a rigid 3D transform by matching map objects to objects localised in the occupancy
grid. Objects are segmented in the image of the occupancy grid as connected components when
height exceeds a given threshold. The registration transform is then obtained using the Iterative
Closest Point (ICP) algorithm run on the two sets of object center points.

The interface with a loaded and registered map can be used to issue commands to the robot.
First a ROS node must be started using ROS init button and entering the ROS master URI,
as described in Section 2.3] Then the robot, whose pose is also displayed in the map, can be
sent to a specific location using Navigate to location button and clicking in the map,

Version 1.0; 2017-06-30 Page 8 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

which results in a message with the corresponding XY coordinates (PoseStamped message).
Alternatively the robot can be sent to a currently selected object using Trim object button,
then the GardenOb ject message is publishe(ﬂ When multiple objects are selected, they
are sent in GardenOb jects sequence instead. The current action can be cancelled with
a dedicated button. GardenUI also updates the occupancy grid from SLAM with semantic
information, i.e. indicates terrain which is not drivable (Figure. [7). Only surface tiles labeled as
grass or pavement are considered safe to drive over.

3.4 Navigation

“/slam/pose”
Semantic geometry_msgs/PoseStamped
SLAM
(ETHZ) “map -> odom*
tf/tfMessages Master-State-
Machine

“/garden_ui/cancel_goal”
std_msgs/Bool

“/indego/imu”
sensor_msgs/Imu

\/

Navigation

“/garden_ui/simple_goal” Planning
geometry_msgs/PoseStamped

Navigation “/indego/odom”
Sketch Map “/garden_ui/goal_object” Execution nav_msgs/Odometry
(UEDIN) trimbot_msgs/GardenObject

\/

(move_base)

“/garden_ui/goal_objects”)
trimbot_msgs/GardenObjects Vehicle Base
(indego)

“/garden_ui/map”
nav_msgs/OccupancyGrid

Figure 8: Interfaces with ROS messages used by the navigation package.

The navigation package includes the master state machine, the navigation planning, the nav-
igation execution (move_base) and the vehicle driver (indego). Figure[§] gives an overview
of the navigation package with all inputs to these package and the provided outputs. The
inputs to the navigation package come from the Semantic SLAM package and the Sketch Map
packages. The Semantic SLAM has to provide for the navigation package the position of the
vehicle w.r.t. the map as a PoseStamped message and a t £ message for the map-to-odometry
transformation. More information about the map-to-odometry transformatimm strategy can be
found at the ROS Wiki. The navigation package gets also inputs from the GardenUI compo-
nent of the Sketch Map package. These inputs are the registered map as an OccupancyGrid
message, the goals where the vehicle has to naviagte to as a simple goal (PoseStamped), a
goal object (GardenOb ject) or a list of goal objects (GardenOb ject s) and the message to
cancel the current goal action. The difference between a simple goal and a goal object is that the

! For the purpose of the first demo the nested MapOb ject message contains the identical description as the parent
GardenObject. It will be later changed to the trimming shape description.

2 ROS Enhancement Proposals (REP) for naming conventions and semantic meaning of mobile platform
coordinate frames: http://www.ros.org/reps/rep-0105.html

3 Documentation of the ROS standard adaptive Monte Carlo localisation (AMCL) including an explanation of the
map to odom transformation: http://wiki.ros.org/amcl#Transforms

Version 1.0; 2017-06-30 Page 9 of © TrimBot2020 Consortium, 2016

http://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/amcl#Transforms

IST — 688007, — TrimBot2020 Deliverable D1.2

simple goal is just a coordinate in the garden to which the vehicle has to drive and a goal object
is an object which has to be trimmed e.g. a bush, a hedge or a rose. If the goal for the navigation
is a goal object the navigation planning has to calculate a position in front of this object and
an approaching manoeuvre to reach a good trimming position for this object. Therefore, the
navigation planning component consist of several nodes for finding the best trimming position
and an approaching manoeuvre.

trimbot (root)

.\
Init .
% (_finished Check for Trimming Object E3

Statemachine = i -
1 states NoneBlockingSubscriberState

[ECETVED

Navigate to Object +
Concurrency
2 states

- unavailable
_done ek

finished
failed wL
failed Trimming 'f’
CalculationState
Pause 2 Pause 1
] WaitState WaitState
fc-ne E
@ é. failed Trimming Successful? '%’ /
failed DecisionState | | J
unawailabie geone
failed
Navigate to Simple Goal |
Concurrency) | Check for Simple Goal &
1states ==—receivedi—] NoneBlockingSubscriberState

Figure 9: Master State Machine: The pink transition is activated after a successful initialisation.
The green transitions build a loop in which the state machine waits for new user goals. The
orange transitions show the procedure if a message for a trimming object is received and the
purple transitions show the procedure if a message for a simple goal is received.

The master state machine controls the behaviour of the robot. It is implemented with
FlexBEﬂ which allows an easy modelling and implementation of state machines for ROS.
FlexBE has some pre-implemented states e.g. ROS message subscriber, logging states or cal-
culation states. FlexBE also allows to interleave state machines. In Trimbot, this concept is
used to encapsulate the state machines for navigation and trimming to keep the master state
machine simple. The master state machine used for the online operation of platform 2 is shown
in Figure[9] The grey boxes are interleaved state machines and the yellow boxes are states. The
arrows between these boxes are the transitions with their conditions. The master state machine
consist of an Init state machine where the vehicle and all sensors are initialised. After a suc-
cessful initialisation (pink transition) the master state machine circulates between two ROS mes-
sage subscriber states (green transitions). Between the two subscriber states two additional
Wait states are included. The first subscriber states is the Check for Trimming Object
which checks if a gardenObject message is received. If such a message is received the

*http://wiki.ros.org/flexbe

Version 1.0; 2017-06-30 Page 10 of © TrimBot2020 Consortium, 2016

http://wiki.ros.org/flexbe

IST — 688007, — TrimBot2020 Deliverable D1.2

orange transition to the Navigate to Object is activated and the navigation state machine
will be entered. After a successful navigation the state machine will go to the Trimming
state. In this version of the state machine the Trimming and Trimming Successful
states are empty and only passed to go back to the wait for user goal circle (green transi-
tions). The second subscriber state is the Check for Simple Goal which checks if a
simpleGoal message is reveived. If this message is received the purple transition to the
Navigate to Simple Goal is activated and this state machine will be entered. After a
successful navigation the state machine will return to the wait for next user goal loop (green
transitions). For the final demonstrator 3 the Trimming and Trimming Successful
states will be replaced by more complexed state machines and a recovery behavior will also
be integrated.

The Navigate to Object state machine is shown in Figure [0} First, in this state ma-
chine the best trimming position in front of the object is calculated. After logging and validating
this position the Drive to Destination state triggers the move_base component to
navigate the vehicle to this position. If the vehicle has reached this position a final approaching
manoeuvre is performed by the Approach Object state.

frimbot (root) > Mavigate to Object > Navigate to Object

L
\ Find Trimming Position 5 — Log Position & po— Valid Position?

CalculationState LogUserdataState DecisionState
nat_valid
@ < @
i valid
finished taled
valid nat_valid failed
Position Reached? ‘%' o Approach Object ‘f’ —— Drive to Destination ‘%’
DecisionState ane CalculationState — NavigationState

Figure 10: The state machine for the navigation to a trimming object.

The Navigate to Simple Goal state machine is shown in Figure [[1] Based on
the user defined goal position, this state machine first calculates in Find Simple Goal
Position aposition which the vehicle can safely reach. After logging and validating this po-
sition the Drive to Destination state triggers the move_base component to navigate
the vehicle to this position. For this purpose, the move_base component plans a path taking
into account all the obstacles listed in the map, thus avoiding all these obstacles.

The ROS move_lbase is used for the navigation execution to navigate the vehicle to a
given destination. The goal position for the move_lbase is provided by the navigation planning
which calculates for each user defined goal a position to which the vehicle can navigate taking
into account the traversable areas in the map. This is needed to avoid goal positions which are
inside an obstacle or to close to an obstacle and therefore not reachable by the vehicle. The nav-
igation planning is triggered either by the Find Trimming PositionorFind Simple

Version 1.0; 2017-06-30 Page 11 of © TrimBot2020 Consortium, 2016

IST — 688007, — TrimBot2020 Deliverable D1.2

trimbot (root) > Mavigate to Simple Goal > Navigate to Simple Goal

.\ Find Simple Goal Position Caone) Log Simple Goal 3

CalculationState LogUserdataState

OF:

Ok done
finished \ / failed \ l -

Bmived failed” “not_valid

\ Drive to Simple Goal &*/ — \ Valid Simple Goal +*

NavigationState - — DecisionState

Figure 11: The state machine for the navigation to a simple goal.

Goal Position states of the state machines. Based on the goal position calculated by the
navigation planning, move_base calculates a collision free path and navigates the vehicle
along this path. The indego driver is used to send the velocity commands from move_base
to the vehicle itself. This node also provides odometry and IMU data from the vehicle which
can then be used by other packages like the Semantic SLAM package.

Version 1.0; 2017-06-30 Page 12 of © TrimBot2020 Consortium, 2016

	Introduction
	Hardware Setup
	Vehicle Odometry
	Vehicle Cameras
	Network for Online Operation

	Software Architecture
	Camera
	Semantic SLAM
	Sketch Map
	Navigation

