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1 Overview
This report describes localization algorithms, designed for localizing the vehicle and the arm
of the robot, respectively. The algorithms serve different purposes and are intended to be
executed at different points in time. In addition, they use different camera systems as input.
In the following, we briefly describe both algorithms before providing details in Sec. 2 and
Sec. 3, respectively. Experimental evaluations of the two systems are provided separately in
each section.

The objective of the vehicle localization system is to determine the current position and
orientation of the robot, i.e., its pose, in a known garden environment. To do so, we first build
a 3D map of the garden in an offline processing step. This map is then used to determine the
robot pose at any point in time during online processing. This is done using the 10 camera multi-
camera rig mounted on the chassis of the robot. The vehicle moves rather slowly, allowing the
localization algorithm to use all 10 cameras. The results of the vehicle localization algorithms
are used to navigate the robot through the garden, allowing it to safely reach the target positions
and objects that need to be cut or trimmed.

The objective of the arm localization is to determine the pose of the cutting tool relative to
the object that needs to be cut. In contrast to the vehicle, the arm can move faster. As such, the
arm localization system needs to run at a higher framerate. Thus, only one stereo pair mounted
on the end of the arm is currently used for localization1.

Notice how both localization algorithms solve different problems: The vehicle localization
system needs to provide an absolute pose in the garden to be useful for navigation. In contrast,
a global pose in the garden is not required for cutting. Instead, a relative pose with respect to
the object to be cut is required. Arm localization also only needs to be performed once the robot
has reached the object. Thus, both algorithms are not run at the same time as the computational
resources of the TrimBot are limited.

There is another important difference between the settings of the two algorithms. For vehicle
localization, it is safe to assume that the largest part of the garden remains static. As such, it
can rely on a pre-built map. In contrast, the geometry and appearance of an object change as it
is cut, making it necessary that the arm localization algorithm adapts to such changes.

2 Vehicle Localization
We have developed two vehicle localization approaches as part of the TrimBot2020 project.
The first approach, which is used on the TrimBot itself, is tightly integrated into the robot’s
SLAM system. It treats localization as a loop closure problem against an existing map built
by the SLAM algorithm. At the same time, the pose of the robot is continuously tracked using
SLAM, allowing us to handle parts of the scene that have not yet been mapped or where the
existing map differs from the actual geometry and appearance of the scene.

The localization system used on the TrimBot relies on local features (SIFT [1] is currently
used) to establish correspondences between images taken at different times or between images
and the 3D map. Thus, this approach has problems to robustly and accurately localize the
robot if the appearance and geometry of the scene observed at the current point in time differs

1In addition, the cameras mounted on the vehicle itself would likely not be able to see all of the object that
needs to be cut.
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Figure 1: Semantic visual localization: Given an image, its corresponding semantic
segmentation, and its corresponding depth map, we build a 3D semantic map. This 3D semantic
map is a voxel volume, where each voxel is either unoccupied, occupied by a certain semantic
class, or unobserved (i.e., we do not know whether it is empty or occupied as we cannot observe
it due to occlusions). The core idea behind our semantic localization approach is to learn a
descriptor that allows us to establish correspondences between semantic maps. These 3D-3D
correspondences can in turn be used to compute the pose of one map (and its corresponding
image) with respect to another map.

too much from the appearance and geometry encoded in the map. This has been shown in
the experimental evaluation performed for Deliverable D3.2 (Implementation and evaluation of
SLAM, 3D from binocular and motion stereo). To overcome this limitation, we developed a
second, more experimental localization system [2]. It combines semantic scene understanding,
in the form of semantic segmentation, and 3D geometry to learn descriptors that are robust under
strong viewpoint changes as well as changes in scene appearance and geometry over time.

The SLAM-based localization approach has been described and evaluated in detail in De-
liverable D3.2. In the following, we thus only explain the semantic-based localization system.
We outline the main ideas behind our method. For more details on the algorithm and the
experimental evaluation, please see our recent publication [2].

2.1 Semantic Visual Localization
The motivation behind our semantic visual localization approach is to develop a more abstract
scene representation that is robust against changes in scene appearance and (moderate) changes
in scene geometry. This in turn allows us establish correspondences between images taken
under conditions widely differing from those under which the 3D map of the scene was built.
For example, our approach is able to localize images taken during autumn, when there is no
foliage on trees, against maps built during summer or winter, i.e., when there is foliage on
trees and snow on the ground, respectively. In contrast, existing approaches from the literature
either fail completely or have severe problems in such scenarios. Notice that these challenging
scenarios are highly relevant to the TrimBot2020 project.

The main idea behind out semantic localization system is illustrated in Fig. 1. The input
to our approach is an image and a depth map for that image. We use the image to compute a
semantic segmentation, providing us with a more semantic understanding of the scene. At the
same time, the semantic segmentation provides a layer of abstraction away from pixel intensities
and thus scene appearance. To obtain a discriminative representation, we combine the semantic
segmentation with the 3D depth map of the image. This is done by fusing them into a local
semantic map, which is a voxel representation of the scene. Each voxel is either unoccupied
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Figure 2: We use a variational encoder-decoder architecture for generative descriptor learning.
Figure taken from [2]. Legend: CP = Convolution + Pooling, FC = Fully Connected, RC =
Reshape + Convolution, UC = Upsampling + Convolution, KL = Kullback-Leibler Divergence,
∆R = Reconstruction Loss. The numbers at the bottom right of each block denote the number
of feature channels.

(corresponding to free space in the scene), occupied by a certain semantic class, or unobserved
(i.e., it is unclear whether it is occupied or not). Given the local map of the image and a
more global map, constructed by fusing the semantic segmentations and depth maps of multiple
images, localization reduces to finding correspondences between voxels in the two maps. The
resulting 3D-3D matches can then be used for camera pose estimation.

There are two challenges that we face when trying to establish correspondences between
voxels: changes in geometry and problems arising due to occlusions. Since we are interested
in modelling higher-level structures, which are more stable to changes in geometry, we use
rather large voxels with a side length of around 30cm. In addition, we consider a 32×32×32
neighborhood around each voxel when computing descriptors for the voxel, i.e., we consider
volumes of size about 10m×10m×10m. At this size, there can be severe problems caused by
occlusions, e.g., when a certain part of the scene is observed in the global but not in the local
map due to the viewpoint of the query image. We solve this problem through a generative
descriptor learning approach.

Fig. 2 illustrates our descriptor learning approach. Given a local voxel volume as input,
which represents a partial observation of the scene, we train a variational encoder-decoder to
predict a complete observation for the voxel volume. The approach is similar to a variational
auto-encoder [3], with the distinction that the input and the output represent differing volumes.
During the encoding stage, the network has to generate a compact representation of the volume
that contains all the information necessary to reconstruct the completely observed volume. This
compact representation, a 256 dimensional vector in our case, thus has to capture the gist of
the scene part visible in the voxel volume. By construction, different partial observations of
the same complete volume map to points close-by in this latent space of the encoder-decoder
network. For localization, we thus only run the encoder part and use the embeddings in the latent
space as descriptors. Nearest neighbor search combined with reasoning about co-visibility then
yields a set of matches that can be used for pose estimation.

Our descriptor learning approach can be trained without supervision. Volumes extracted
from the global map provide us with complete observations. Corresponding incomplete obser-
vations can be generated by extracting the corresponding volume from the local maps of the
images used to generate the global map.
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2.1.1 Experimental Evaluation

Experimental setup We evaluate our approach on the Michigan North Campus long-term
vision and lidar dataset [4]. The dataset depicts a campus of the University of Michigan at
different times of the year, with images and lidar measurements captured from a robot traversing
the campus. We use the lidar measurements to generate depth maps as input for our approach.
However, we trained our descriptors on the KITTI dataset [5], where depth maps were generated
from stereo.

We built 4 global maps from data captured under different conditions: on a partially cloudy
midday without foliage on the trees and without snow on the ground, on a sunny morning
without foliage on the trees and without snow on the ground, on a sunny evening with foliage
on the trees and without snow on the ground, and on a cloudy afternoon without foliage on the
trees and with snow on the ground. We use data taken under the same conditions to query the
different maps, enabling us to evaluate the impact of differing conditions on the localization
performance.

Baselines We compare our approach against different state-of-the-art localization approaches
from two different categories: appearance-based methods (SIFT [1], DSP-SIFT [6], MSER [7],
DenseVLAD [8]) extract local features from the images, ignoring the available depth maps.
In contrast, 3D descriptor-based approaches (FPFH [9], 3DMatch [10], CGF [11]) extract
descriptors from 3D scene representations computed from the depth maps, ignoring the image
information. We are not aware of a method that combines image and depth information for
descriptor extraction. We also compare against PoseNet [12]. PoseNet is a deep learning-based
approach that trains a neural network to directly regress a camera pose from an image.

We evaluate four variations of our approach: Ours (semantic) is the semantic localization
approach outlined above. Ours (semantic, acc.) builds the local map that is used for localization
from a small set of consecutive images, i.e., aims at localizing a short sequence of images.
Ours (geometric) and ours (geometric, acc.) are variants of these two methods that do not
use semantic but only geometric information during the generative descriptor learning and
extraction stages. The comparison of the former two with the latter two variants allows us
to understand the importance of using semantic scene understanding for our descriptors.

Comparison Fig. 3 shows the results of our experiments. As can be seen, appearance-based
approaches perform well when the query images are taken under the same condition under
which the map was constructed. This is due to the very similar appearance in the images and
a lack of strong viewpoint changes between the query images and the images used to build the
maps. Still, our methods using semantics perform competitively in this relatively easy scenario.

Looking at the scenarios where there are appearance and / or geometric changes between
the query images and the map (cf. off-diagonal plots in Fig. 3) reveals that these scenarios are
considerably harder for appearance-based approaches. 3D descriptor-based methods perform
considerably better under these challenging conditions, but still have problems when there are
geometric changes (in foliage or snow coverage). In contrast, all variants of our localization
system perform considerably better in these scenarios. While there is degradation in perfor-
mance, it is much less severe compared to the baseline approaches. We also notice a significant
increase in localization performance when using semantics and geometry for descriptor learn-
ing compared to just using geometric information. This validates our idea of combining 3D
geometry and semantic scene understanding to enable long-term localization.
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Figure 3: Evaluation of our semantic localization approach on the Michigan North Campus
dataset. Each column represents query images taken under a certain condition while each row
corresponds to the condition under which the global map was build. For each method, we show
a cumulative histogram over the localization accuracy, i.e., we show the percentage of query
images localized within Xm of the ground truth position for varying values of X . Figure and
legend taken from [2].
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Shortcomings The experimental evaluation presented above clearly shows that our semantic
localization algorithm is a promising approach to robust and reliable long-term localization.
However, it also has its shortcomings: on the practical side, localizing a single image takes
around a second (not taking the computation of depth map into account). The bottleneck is
the computation of the descriptors, taking around 1ms per volume on a powerful NVidia Titan
X GPU. This run-time currently puts our method out of consideration for being run on the
TrimBot itself. This is due to the weaker hardware available on the robot and the need to
share the resources with other systems, e.g., the SLAM system (in which the approach would
need to be integrated). The second shortcoming is in a key assumption made by our approach:
We assume that the quality of the semantic segmentation is invariant to the appearance of the
scene, allowing us to extract an invariant representation. As shown in Deliverable D3.2, this
assumption is not true in practice as state-of-the-art semantic segmentation algorithms often fail
when the input images differ too much from their training data. Still, our results demonstrate
that there is value in integrating semantics, even if they are not perfect. Developing more robust
segmentation algorithms thus seems an important research direction.

2.2 Multiple Sensor Pose Fusion with EKF
While pose estimation with Visual or Semantic SLAM can be highly accurate, it is not guaran-
teed to provide the smooth pose estimate that the navigation node expects. For this reason it is
desirable to include a filter that can use other sensors mounted on the vehicle and motion model
to constrain the estimated trajectory of the vehicle to be smooth.

In the Extended Kalman Filter (EKF) model [13], the process (robot motion) can be de-
scribed as a nonlinear dynamic system with

sk = f(sk−1) + wk , (1)

where sk is the state vector (robot pose) at a discrete time tk, the non-linear transition function
is denoted as f and wk−1 ∼ N (0,Qk) is the process noise with covariance Qk.

Our goal is to estimate the full 3D (6DOF) pose using the ROS framework [14], where the
state s is defined as

sk = [x,ϕ, ẋ, ϕ̇, ẍ] , (2)

where x ∈ R3 is the linear translation (XYZ) and ϕ ∈ (0, 2π)3 is the orientation angle (roll,
pitch, yaw / RPY) component of the pose, ẋ, ϕ̇ are the linear and angular velocities and ẍ is the
linear acceleration. The transition function f then describes the standard kinematic model:

x̂k = xk−1 +

∫ tk

tk−1

ẋk−1dt+

∫∫ tk

tk−1

ẍk−1dt2 , (3)

ϕ̂k = ϕk−1 +

∫ tk

tk−1

ϕ̇k−1dt . (4)

In practice f is discretized and linearized in the filter implementation.

2.2.1 Input Measurements

While the EKF allows a non-linear measurement model, we restrict ourselves to the linear case
as with the standard KF. Then multiple sensor measurements z can be modeled as

zk = Hŝk + vk , (5)
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Sensor s x ϕ ẋ ϕ̇ ẍ Hz
Visual SLAM zslam 1 1 (∆) (∆) 5
Wheel Odometry zodom ∆ ∆ 50
IMU zimu 1 1 250

Table 1: Mapping of sensor measurements z to components of the state vector s. Observation
matrix H for different sensor inputs and their update frequency. ∆ indicates differential mode.

where H is the observation matrix and vk−1 ∼ N (0,Rk) is the measurement noise with
covariance Rk. In the case of multi-sensor fusion, there are multiple sensor models and each
sensor gives only partial observations of the state, i.e. only certain blocks of H are non-zero,
as indicated in Tab. 1. In particular, our system has three inputs:

1) The Visual SLAM algorithm provides measurement of the global pose zslam
k = (x,ϕ)

of the first (front) camera w.r.t. static map coordinates. Each measurement is an independent
estimate of the pose given the images captured by the synchronized 10-camera rig. As such, the
updates are not guaranteed to be smooth in pose space or time, occasionally resulting in lags
(time periods with missing data) and jumps (sudden changes of pose).

2) Wheel Odometry sensors (Bosch Indego) count the rotations of wheels at both sides
of the vehicle, which are transformed into linear and angular velocities zodom

k = (ẋ, ϕ̇) corre-
sponding to the vehicle center (of the rear wheel axis). Internally, those velocities are integrated
into a trajectory relative to the initial pose of the vehicle, but for the purpose of the filter updates
they are differentiated back to into velocities. The wheel odometry trajectory is typically smooth
but drifts away from the actual trajectory due to wheel slippage and accumulated noise.

3) The Inertial Measurement Unit (Xsens MTi) includes three-axis gyroscopes and ac-
celerometers that provide angular and linear accelerations, which are typically integrated inter-
nally by the sensor to velocities. In practice, we expect the sensor to produce zimu

k = (ϕ̇, ẍ)
because angular accelerations are not included in the state. Because of the double integration
needed to apply accelerations to pose, any measurement bias propagates quadratically, resulting
in smooth but rapid drift of the integrated pose. Better results can be achieved when the bias
is explicitly estimated and compensated [15], but this gives a significant advantage only in the
case of highly dynamic systems such as fast moving and turning UAVs.

The different locations of the individual sensors on the vehicle is taken into account by
transforming the measurements into a common reference frame (base link) using a physical
robot model.

Measurement Covariance Estimation The model requires the measurement covariance R to
be specified for all sensor measurements. We discuss below how the actual values are computed
for our three input modalities.

The covariance Rimu of the IMU measurements is a constant matrix reported by the sensor
driver (based on accuracy specifications). Similarly we set the wheel odometry covariance
Rodom to a constant value (i.e. 0.1 m/s or 1 deg/s for velocities on the diagonal).

The estimation of the Visual SLAM pose covariance is complicated by the variable accuracy
of independent pose estimates, which can include outliers, rendering a constant covariance un-
usable. In practice the observed behavior is that the pose estimate becomes unreliable in certain
regions of map where a sufficient number of visible keypoint matches cannot be established,
e.g. due to different lighting conditions. The reliability improves again when the robot leaves

Version 1.0; 2017–07–11 Page 8 of 15 c© TrimBot2020 Consortium, 2010



IST – 688007, – TrimBot2020 Deliverable D3.5

such regions or conditions improve. This observation leads us to the assumption that although
Visual SLAM poses are calculated independently, such estimates are still correlated due to
visual overlap of consecutive camera views, and we can use the statistics of past poses to predict
the covariance of the current measurement.

We assume the vehicle has a physical limit on the velocity ẋm it can travel. Then any sub-
sequent global pose measurements zslam

k with position difference δk = ||xk−xk−1|| exceeding
the distance δm = ẋm(tk − tk−1) it could travel at the maximum velocity for the corresponding
time period should be deemed unreliable or as an outlier.

With this assumption we can estimate the current position variance σ̂k from a buffer of n
past position differences as

σ̂2
k = σ2

s +
1

n

k−n∑
i=k

[max(δi − δm, 0)]2 , (6)

where σs = 0.1 m is a constant (static) position variance. However, a naive implementation
using a finite (ring) buffer with fixed capacity n can result in sudden changes in pose when out-
standing past values are dropped from the buffer. To lessen this problem, we use an exponential
term to give more weight to more recent measurements:

σ̃2
k = σ2

s +
1

n

k−n∑
i=k

[ e−a(tk−ti) max((δi − δm), 0) ]2 , (7)

which is then used to set the diagonal in the covariance matrix Rslam individually for all 3
position and 3 orientation terms.

Outlier Rejection Following the common EKF approach, incoming measurements are com-
pared to the current pose estimate using the Mahalanobis distance, which takes into account
covariances of both. If such a normalized distance exceeds a given threshold, the measurement
is rejected as an outlier. When the uncertainty of the pose estimate increases, this causes the
filter to accept even more distant measurements. Additionally, measurements with covariance
above a certain threshold are rejected. Also, measurements that fall outside a given height (Z)
range (under ground / in the air) are rejected.

In some situations, e.g., after the SLAM pose estimate recovers by switching to a distant
location, all subsequent measurements are rejected as outliers. In order to recover from such
situations, the filter is re-initialized when the state covariance estimate grows above a threshold.

Handling Lags Lags occur when measurements are not received at expected rate or for an
extended period of time. This can occur in the difficult scenarios mentioned above, resulting in
global localisation failures. In this time period the filter relies on integration of odometry and
IMU measurements to update the current pose, which can result in pose drift.

We observe that when the SLAM pose recovers after lags as it moves out of difficult regions,
the first measurements are often unreliable. This is probably a manifestation of a gradual
transition into ‘easier’ regions with more matched features. For smoother transitions when
Visual SLAM recovers, we switch the measurement zslam

k = (x,ϕ) to differential mode, i.e.
the global pose is transformed into the velocity z∆slam

k = (ẋ, ϕ̇). We switch to velocity when
the update rate drops below a given threshold (1 Hz), and switch back to position after the rate
of consecutive 10 measurements averages above the threshold.
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2.2.2 Filter Updates

The EKF iteratively updates the state estimate vector sk and associated state covariance matrix
P k in alternating predict and correct steps.

Initialization The filter is initialized with the pose

s0 = E[s(t0)] = [zslam
0 , zodom

0 , ẍimu
0 ] , (8)

which is in our case the first observed global pose and actual velocity and acceleration as
reported by the sensors. The initial state covariance P 0 is an empirically set diagonal matrix.

Predict The new value of state vector is computed using the transition function from the
previous state

ŝk = f(sk−1) . (9)

Correct The state is updated based on measurement residual

sk = ŝk + Kk(zk −Hŝk) , (10)

where Kk is the near-optimal Kalman gain derived to yield a minimum mean square error
(MMSE). Update equations for the state estimate and its covariance P k are based on the local
linearization of the underlying non-linear model and can be found in [14].

We run the predict-correct cycle at constant rate of 10 Hz, when measurements taken during
the cycle period (100 ms) are aggregated. With this setting the filter node can run in a single
mobile CPU thread.

2.2.3 Evaluation

We evaluate our EKF implementation on the Renningen garden dataset already used in Deliv-
erable D7.5. In this dataset, we observed frequent jumps in the pose estimated by SLAM due
to the repetitive structures found on some of the buildings coupled with overexposed images.

Results for 6 trajectories captured in the garden are presented in Figures 4 and 5. A zoomed
in plot of one of the trajectories is shown in Fig. 7. As can be seen from the trajectory plots,
EKF successfully rejects SLAM outliers and integrates all sensor measurements into locally
smooth trajectories. However, it cannot cope smoothly with large offsets in the global position.
Most of these cases can only be resolved by an automatic filter reset due to a large covariance
estimate and a subsequent ‘jump’ to the corrected global pose reported by SLAM.

A quantitative comparison in Fig. 6 suggests that the EKF trajectory is more accurate than
its SLAM input. Based on the trajectory plots, this improvement seems to be mostly caused by
outlier rejection. The presence of larger global offsets in the SLAM poses wrt. GT however
does not allow to evaluate the local accuracy of EKF (e.g., smoothness) well in quantitative
terms.

Additionally, we run the filter on the more recent data from the Wageningen test garden
(which was used in D3.2). We did not observe a noticeable improvement by using EKF. This is
due to the fact that the SLAM system already provides smooth and stable results in this garden.
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3 Arm Localization
A severe challenge faced during arm localization is that both the appearance and geometry
of the scene changes drastically during cutting and trimming. The initial plan for the arm
localization algorithm was thus to avoid this hard problem altogether. Rather than developing
a camera-based solution, the idea was to use the joint angle measures provided by the Kinova
arm together with the known lengths of the joints. According to the fact sheet for the arm,
this should have provided us with an accurate localization result. However, we noticed that in
practice the measurements provided by the arm do not accurately reflect the actual angles. This
is due to the weight of the cutting tool and (partially) the cameras mounted on the arm. As such,
we are currently working on computer vision-based approaches to arm localization.

In the following, we describe and evaluate two approaches that can currently be used for
arm localization: The first is based on the Generalized Camera SLAM (GCSLAM) approach
used for vehicle localization (and described in detail in Deliverable D3.2). GCSLAM is based
on sparse keypoints and thus only provides a sparse 3D model of the scene that is unsuitable
to plan the cutting motion. To be able to track the motion of the arm while obtaining a dense
3D model, we are also working on adapting DeepTAM [16], a deep learning-based approach
recently developed by ALUF.

3.1 Generalized Camera SLAM (GCSLAM)
We perform an evaluation of the same SLAM algorithm that is used for vehicle localization for
usage with the arm-mounted cameras. In contrast to the vehicle localization, we do not perform
the map creation and localization in two separate steps, but use the SLAM algorithm online for
both mapping and camera tracking. In addition, we do not attempt to perform appearance-based
image matching for loop closure detection. Instead, we rely solely on the sequential matching,
therefore using rather a visual odometry than full SLAM. During actual cutting, we can expect
that the appearance of the bush changes significantly, which limits the value of a relocalization
against older map parts. Although no cutting is performed during our experiments, we observed
that the appearance based matching does not significantly improve the tracking accuracy, but
can instead lead to much worse pose estimates due to wrong matches.

Localization accuracy Due to the lack of reliable ground truth poses, we only perform a qual-
itative analysis of the estimated poses and trajectories. The estimated trajectories for multiple
datasets with the cameras moving around a single bush is shown in Fig. 8. We can observe
that initialization and consequently the first few SLAM poses can be quite unstable. The first
frames set aside, the SLAM trajectories are stable and smooth. As a reference, the trajectories
computed from angle measurements of the robot arm are shown as well. As explained above,
the angle measurements are not sufficiently accurate to localize the arm and cannot be used as
ground truth. Instead, the comparison with these measurements serves the purpose of showing
that there is no significant drift in the poses estimated by SLAM. Overall, we suspect that
the SLAM poses are more accurate than the poses obtained by the measured angles. We will
analyze the SLAM poses in more detail once accurate ground truth for the trajectories of the
arm is available.

While the results above are obtained with only 1 camera pair, there are 6 cameras available
on the arm, including 2 with wide angle lenses. We could not observe significant improvements
when also using the 4 additional cameras in preliminary experiments. A likely explanation
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for the similar performances is the large overlap in the cameras’ field of view: Using more
cameras does not significantly increases the effective field-of-view available to the localization
algorithm.

Runtime In order to benefit from the increased accuracy compared to the joint angle mea-
surements, the estimates also need to be available as fast as possible. Here, the SLAM system
benefits from the lower number of cameras compared to vehicle localization, and the dropped
requirement for relocalization. The processing times per frame for two trajectories (top row in
Fig. 8) are given in Fig. 9. Using all 6 available cameras, the required runtime for each frame
increases significantly. Fig. 10 shows the runtimes for the same trajectories as in Fig. 9, but
using 6 cameras instead of 2. Obviously, these runtimes largely reduce the applicability for live
localization.

Field of View In static scenes, we could not observe a benefit from a wider field of view,
and even observed disadvantages from increasing the number of cameras. Yet, we expect a
more robust performance when using wide angle lenses in scenarios where the scene geometry
changes during the cutting operation. Fig. 11 shows the extracted features from a camera
with standard lens and one with wide angle lens of the same frame. Clearly, the wide angle
lens provides much more information about the background. As such, we expect this setup to
yield more stable pose estimates during cutting. We plan further evaluations on sequences with
cutting information once they become available.

3.2 DeepTAM
DeepTAM [16] is a keyframe-based dense camera tracking and depth map estimation system
which uses neural networks. To achieve higher accuracy, we compute the depth using the
stereo pair with DispNet [17]. The camera pose is estimated using the tracking network from
DeepTAM. The tracking network contains a stack of encoder-decoder-based networks which
implement a coarse-to-fine approach. We render the keyframe image and depth to a virtual
frame given a pose guess. The tracking network takes the virtual keyframe and the current frame
as inputs and track the relative pose incrementally between them. This incremental formulation
simplifies the learning task and reduces the effects of dataset bias. Fig. 12 shows an overview of
the tracking network architecture. For detailed description, please refer to our publication [16].

3.2.1 Evaluation

Generalization The most common problem in many learning-based methods is overfitting. The
generalization ability is crucial, because there are no available training datasets for dense camera
tracking in garden scenes. We took special care in the problem definition and the architecture
design to make our model generalize better. Tab. 2 shows the results from a series of cross-
validation experiments: Purely training on the synthetic dataset already allows us to outperform
a classical baseline. With the help of the real datasets, we can achieve even better performance.
The garden scene differs from the scenes that we have trained on and the camera instrinsics are
also slightly different. The generalization ability allows our model to provide a reliable pose
estimation to this unseen case.

Tracking performance Fig. 13 shows a qualitative reconstruction comparison with the es-
timated poses of DeepTAM and the poses of the robot arm. The reconstruction is simply
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Sequence
RGB-D SLAM Ours Ours

Kerl [18] (SUNCG [19]) (SUNCG [19] + SUN3D [20])

fr1/360 0.119 0.072 0.061
fr1/desk 0.030 0.042 0.038
fr1/desk2 0.055 0.052 0.051
fr1/floor 0.090 0.103 0.079
fr1/plant 0.036 0.031 0.027
fr1/room 0.048 0.045 0.044
fr1/rpy 0.043 0.060 0.058
fr1/teddy 0.067 0.074 0.062
fr1/xzy 0.024 0.018 0.016

average 0.057 0.052 0.048

Table 2: Evaluation of our tracking on the RGB-D benchmark [21]. The values describe the
translational RMSE in [m/s]. We compare the performance of our tracking network with
different combination of training data against the RGB-D SLAM method of Kerl et al. [18].
Results of Kerl et al. [18] are taken from their paper. Ours (SUNCG) is the model that we train
only with the synthetic dataset SUNCG [18], while for Ours (SUNCG + SUN3D) we use a
combination of the synthetic dataset SUNCG [18] and the real dataset SUN3D [20].

implemented by combining the point clouds of all keyframe using their estimated poses. No
extra fusion methods are applied. It can be seen that using the robot arm pose, the reconstructed
bush is not a sphere and the ground has several layers. This is due to the inaccuracy of the joint
angle measurements provided by the Kinova arm. The noisy reconstruction is too inaccurate
for shape fitting and arm control.

Challenges Fig. 14 shows a challenging case where the camera is very close to the bush. Both
DispNet [17] and DeepTAM [16] models are not well optimized for this case, which results in
a sparse disparity estimation and unstable tracking. One solution is to use a wide angle camera,
which has a larger field of view and can provide more information for the tracking. Another
solution is to finetune the DispNet [17] and DeepTAM [16] to adapt to the challenging cases.

4 Conclusion & Outlook
In this report, we have described the vehicle and arm localization techniques that are currently
used and developed as part of the TrimBot2020 project. We have shown how a generative
descriptor learning approach based on fusing semantic image data and 3D can be used to enable
long-term localization. In addition, we have described and evaluated two approaches for arm
localization, one based on local features and one based on deep learning.

While the semantic localization approach achieves very promising results, it is currently not
efficient enough to be integrated into the TrimBot2020 pipeline. Thus, defining more efficient
network architectures could be an interesting direction for future work. Still, it is unlikely that
this approach will be used on the TrimBot due to its limited computational resources.

For arm localization, natural next steps are to evaluate the localization approaches under
trimming operations and to adapt them according to the results. We are currently also working
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on obtaining ground truth arm trajectories for quantitative evaluations of the arm localization
algorithms.
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Figure 4: Comparison of the positions estimated by SLAM and EKF on trajectories 1–3 of the
Renningen garden dataset. Left: trajectory map. Right: 2D position error wrt. corresponding
GT position (mean absolute distance in brackets).

Version 1.0; 2017–07–11 Page 16 of 15 c© TrimBot2020 Consortium, 2010



IST – 688007, – TrimBot2020 Deliverable D3.5

2 4 6 8 10 12 14

X [m]

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

Y
 [
m

]

short-distance-on-path-2017-10-25-15-02-48

SLAM

EKF

GT

0 20 40 60 80

GT travelled time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

s
it
io

n
 e

rr
o

r 
[m

]

Position Error (2D)

SLAM (0.047 m)

EKF (0.040 m)

0 2 4 6 8 10 12 14 16 18 20

X [m]

-14

-12

-10

-8

-6

-4

-2

0

Y
 [
m

]

straight-line-on-path-2017-10-25-14-59-29

SLAM

EKF

GT

10 20 30 40 50 60 70

GT travelled time [s]

0

0.5

1

1.5

2

2.5

3

3.5

P
o

s
it
io

n
 e

rr
o

r 
[m

]

Position Error (2D)

SLAM (0.915 m)

EKF (1.019 m)

-2 0 2 4 6 8 10 12 14 16 18

X [m]

-10

-5

0

5

Y
 [
m

]

straight-paths-on-grass-2017-10-25-14-54-53

SLAM

EKF

GT

0 50 100 150 200

GT travelled time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o

s
it
io

n
 e

rr
o

r 
[m

]

Position Error (2D)

SLAM (0.191 m)

EKF (0.071 m)

Figure 5: Comparison of the positions estimated by SLAM and EKF on trajectories 4–6 of the
Renningen garden dataset. Left: trajectory map. Right: 2D position error wrt. corresponding
GT position (mean absolute distance in brackets).
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Figure 6: Quantitative comparison of the position accuracy obtained with SLAM and EKF on
the different trajectories of the Renningen garden dataset. Mean absolute distances (in brackets)
of all compared position estimates show that the accuracy was improved by 40% or 5 cm on
average. See D7.5 for detailed discussion of presented SLAM results (the large error in track 5:
straight line on path comes from the accumulated drift).
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Figure 7: Visualization of trajectories with covariances as ellipsoids for
straight paths on grass track (top) and its detail (bottom). Legend: blue = GT,
purple = SLAM, yellow = EKF, big arrow = final pose. Top: As the TrimBot moves from
right to left (lower part), SLAM measurements below (purple) are rejected as outliers, causing
EKF to integrate wheel odometry and IMU measurements, resulting in a gradual increase
in covariance (yellow). Bottom: EKF rejects outliers and smoothly interpolates inliers at a
constant rate.
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Figure 8: Trajectories estimated by SLAM compared to the estimations from joint angle
measurements (TF). The trajectories are aligned by minimizing the distance between the
trajectories at each timestamp. Camera orientations are shown for some intermediate
timestamps. The first frame is highlighted.

Version 1.0; 2017–07–11 Page 20 of 15 c© TrimBot2020 Consortium, 2010



IST – 688007, – TrimBot2020 Deliverable D3.5

0 500 1000 1500 2000 2500 3000

Frame ID

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

c
e

s
s
in

g
 t

im
e

 [
s
]

0 200 400 600 800 1000 1200

Frame ID

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

c
e

s
s
in

g
 t

im
e

 [
s
]

Figure 9: Processing times per frame for the two top row trajectories in Fig. 8. We can observe
an increase in runtime for the long trajectory (left), but processing is still faster than the input
frame rate of 9Hz. Two cameras were used in this experiment.
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Figure 10: Runtimes with 6 cameras instead of 2. Processing is significantly slower than the
input frame rate.

Figure 11: Example images from a camera with standard lens (left) and wide angle lens (right)
of the same frame. With the wide angle lens, a lot more background information can be
captured. Red dots indicate feature points.
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Figure 12: Overview of the tracking networks and the incremental pose estimation. We apply a
coarse-to-fine approach to efficiently estimate the current camera pose. We train three tracking
networks each specialized for a distinct resolution level. Each network computes a pose estimate
δTi with respect to a guess TV

i . The guess TV
0 is the camera pose from the previously tracked

frame. Each of the tracking networks uses the latest pose guess to generate a virtual keyframe
at the respective resolution level and thereby indirectly tracking the camera with respect to the
original keyframe (IK ,DK). The final pose estimate T̂C is computed as the product of all
incremental pose updates δTi.
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Figure 13: Qualitative reconstruction comparison using the estimated poses from Deep-
TAM [16] (Top) and the measured poses from the arm (Bottom).

Figure 14: Disparity estimation in a challenging case where the camera is very close to the bush.
Left: the original disparity estimation from DispNet [17]. Right: the disparity estimation from
DispNet [17] with left-right-consistency check. We use a threshold of 2.5 pixels.
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