
IST – 688007, – TrimBot2020 Deliverable 5.2

TrimBot2020 Deliverable 5.2

Scene Flow Software

Principal Author: ALUF
Contributors: ALUF
Dissemination: PU

Abstract: A major goal in WP5 is an accurate scene flow estimation
software that can run at interactive framerates. In this report, we describe
our solution for a scene flow module comprising disparity and optical flow
estimation.

Deliverable due: Month 24

Version 1.0; 2017–12–31 Page 1 of 12 c© TrimBot2020 Consortium, 2016

Ref. Ares(2018)2230541 - 26/04/2018

IST – 688007, – TrimBot2020 Deliverable 5.2

Contents
1 Scene Flow 3

2 Software Package 4
2.1 ROS Interface . 4
2.2 DispNet . 4
2.3 FlowNet2 . 5
2.4 Framerates And Resource Usage . 8
2.5 Launch Example . 9

Version 1.0; 2017–12–31 Page 2 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

DispNet
+

FlowNet2

Left view,
frame t

Right view,
frame t

Left view,
frame t+ 1

Right view,
frame t+ 1

Input side

Disparity,
left view,
frame t

Disparity,
left view,

frame t+ 1

Optical flow,
left view,

frame t→ t+ 1

Output side

Figure 1: Required data (input side) and produced data (output side) of the scene flow module. The
module takes streams of camera images and produces streams of scene flow data. The raw output formats
(disparity, optical flow) decouple the module from the intrinsic camera parameters and the calibration of
the stereo rig (which cannot be assumed to be both perfectly constant and known beforehand). With
known camera intrinsics and stereo baseline, the raw outputs are then easily converted to metric scene
flow. Images taken from [1].

1 Scene Flow
Scene flow describes the 3D motion of an observed scene. This motion can be induced by any
combination of movements of the scene objects or the camera itself. Our approach to scene flow
combines depth estimation and optical flow estimation as illustrated in Fig. 1. By estimating the
depth of a scene point in a given camera frame, this point is located within 3D space. Optical
flow is then used to track the point into the next frame where a new depth estimate is computed.
These three components together yield a 3D motion vector for the observed point.

For depth estimation, we use the DispNet from [1], a convolutional neural network (CNN)
for full-frame disparity estimation on rectified stereo images. This is a disparity method, but
given the intrinsic and stereo-rig calibration data of the stereo camera, the disparity results are
equivalent to metric depth estimates.

The FlowNet2 CNN from [2] is used to estimate the required optical flow maps. As with
the DispNet, the FlowNet2’s results are given in pixel space. Again, camera calibration data is
necessary to lift the result into metric scene space.

Version 1.0; 2017–12–31 Page 3 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

2 Software Package
The ALUF scene flow package is provided within the ROS ecosystem and split into multiple
ROS nodes:

• aluf_ethzcam_rectifier: Undistortion and stereo-rectification of raw camera
image streams (camera calibration data must be given)

• aluf_dispnet, aluf_disparity_view: DispNet module for disparity estima-
tion, along with a visualization helper module so the disparity outputs can be visually
inspected

• aluf_flownet, aluf_flow_view: FlowNet2 module for optical flow estimation,
along with a visualization helper

• aluf_vision_pipeline: A meta-package including a ROS launchfile to start all
scene flow components

• aluf_test_images_repeater: Contains a ROS node which repeatedly publishes
two included stereo frames (= 4 images). This package can be used for testing whether
the other scene flow nodes work without having to connect and calibrate a camera.

The DispNet and FlowNet2 modules are both built upon the Caffe deep learning frame-
work [3]. The CNN definitions and models are modular. New trained models or definitions
can easily be swapped for the existing ones; this is akin to changing (hyper)parameters in a
“traditional” algorithm. Each ROS node is a separate ROS package so the disparity and optical
flow estimators can also be used each on their own.

2.1 ROS Interface
Our rectification node subscribes to the two raw images stream published by the camera driver.
The camera calibration is done beforehand (we used Kalibr [4]) and given to the rectifier as a
YAML text file. The rectifier publishes two new image streams and a camera_info stream
for the left-view image stream. The camera_info messages contain the recified camera
intrinsics. We also misuse the (normally unused) projection matrix field P of the message and
annotate it with additional information about the rectified images; currently P tells which areas
of the images can be cropped away as they contain undistortion artifacts, and it contains the
stereo baseline of the camera system. The exact use of P is documented in the rectification
node’s source code1.

2.2 DispNet
The DispNet module subscribes to the synchronized left and right camera topics. For each
processed frame pair, the module produces a disparity map which is published as a topic of
DisparityImage messages (the optional disparity visualization module subscribes to this

1File path in the project repository tree, at time of writing: Proc3D/SceneFlowALUF/ROS-packages/
aluf_ethzcam_rectifier/rectify.py

Version 1.0; 2017–12–31 Page 4 of 12 c© TrimBot2020 Consortium, 2016

Proc3D/SceneFlowALUF/ROS-packages/aluf_ethzcam_rectifier/rectify.py
Proc3D/SceneFlowALUF/ROS-packages/aluf_ethzcam_rectifier/rectify.py

IST – 688007, – TrimBot2020 Deliverable 5.2

Figure 2: DispNet architecture. See [1] and the document for project deliverable D5.1 for
details. This is the “simple” architecture without a correlation layer.

Figure 3: DispNet architecture with correlation layer. This architecture is the basis for the
DispNetCorr1D from [1]. The part shown here replaces the early stages of the DispNet in Fig. 2.

topic and itself publishes another Image topic with a displayable colormapped version of
the disparity map). The DispNet itself directly produces a full-frame disparity map, but some
postprocessing options are implemented and can be enabled and configured using parameters
in the DispNet module’s launchfile. Fig. 4 shows examples for the following options:

• If left-right consistency checking is enabled, the node will not only produce a disparity
map for the left view, but also for the right view. Both maps are then used to check if
the disparity estimates are consistent across views (i.e. in both left-right and right-left
directions). Pixels with inconsistent estimates are flagged. Note that this has a significant
performance penalty as the compute hardware effectively has to do twice as much work.

• Disparity estimates for pixels at the far left of the left view are subject to occlusion effects:
the DispNet will estimate a disparity for a pixel even if that pixel is not actually visible
in the right view. An optional filtering step flags such “impossible” matches. Note that
this cannot detect general occlusions arising from the perspective difference between the
two camera views.

• The DispNet tends to produce oversmoothed disparity maps, i.e. the map is incorrectly
smoothed where depth discontinuities should be (e.g. along object boundaries). An
optional filtering step flags areas with large disparity gradients.

2.3 FlowNet2
The FlowNet module takes images from the left camera as input and outputs optical flow
fields. The parameter flownet_variant determines which variant is being used and has

Version 1.0; 2017–12–31 Page 5 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

Left input image Right input image

No postprocessing No far-left occlusion matches

No strong disparity gradients Left-right consistency check (threshold: 2px)

Figure 4: Disparity results on different postprocessing configurations. Note that left-right
consistency checking eliminates the area occluded by the hand as well as featureless regions
in which accurate matching is not possible.

Version 1.0; 2017–12–31 Page 6 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

First input image Second input image

FlowNet2-s (14 fps) FlowNet2-ss (11 fps)

FlowNet2-css-ft-sd (8 fps) FlowNet2-CSS-ft-sd (5 fps)

FlowNet2-cssR (6 fps) FlowNet2 (3 fps)

Figure 5: Optical flow results on different FlowNet2 architecture configurations. The flow fields
are visualized using the “Middlebury” scheme shown in Fig. 7.

Version 1.0; 2017–12–31 Page 7 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

the following options, sorted in order from low accuracy/low runtime to high accuracy/high
runtime (see [2] for details). Fig. 5 shows an example for each configuration. Fig. 6 shows
schematics of the different architectures.

• FlowNet2-s: This is the smallest and fastest FlowNet (only containing a FlowNetS).
Accordingly, the accuracy is also the lowest.

• FlowNet2-ss: This is a stack of two small FlowNetS. The resulting network yields more
accurate estimates than FlowNet2-s, but less accurate than the other, larger architectures.

• FlowNet2-css-ft-sd: This is a stack of one small FlowNetC and two small FlowNetS. This
stack gives the best performance and runtime trade-off. This variant is also finetuned on
small dislacement data, which is often present in real-world scenarios.

• FlowNet2-cssR: This is the same network as above, but includes a final refinement
network for high resolution refinement (with the architecture of the fusion network from
FlowNet2, but without FlowNet2-SD). This produces sharper boundaries and less noise
than FlowNet2-css-ft-sd.

• FlowNet2-CSS-ft-sd: This is the same as FlowNet2-css-ft-sd but with a much larger
network.

• FlowNet2: This is the complete FlowNet2 (slowest and best performance).

The optical flow is output through an Image sensor message, where the image contains floating
point vectors with x- and y-components for each pixel. The visualization module can be used
to convert this into an interpretable image. Flow is usually visualized by placing the flow vector
in a color circle. Color then indicates direction and brightness indicates magnitude. There are
two types of visualization (Parameter viz_type):

• Middlebury Vizualization (value middlebury): Best used for computer screens, the
center of the color circle is black (i.e. black indicates zero motion, see Figure 7a).

• Sintel Vizualization (value sintel): Best used for printing, the center of the color
circle is white (i.e. white indicates zero motion, see Figure 7b).

Since different applications have different typical flow ranges, there is a scale parameter for
the visualization (Parameter viz_scale). The meaning of its value is chosen such that it
corresponds to the flow magnitude at maximum saturation (choose appropriately for small or
large flows).

2.4 Framerates And Resource Usage
These numbers were evaluated on a machine with a Nvidia GTX 980M mobile GPU with 8 GB
VRAM. In terms of performance, this GPU is comparable to the Nvidia GTX 1060 model with
6 GB VRAM chosen for the project hardware.

Version 1.0; 2017–12–31 Page 8 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

Module Configuration VRAM use Framerate

DispNet DispNetCorr1D 1 GB 12 fps

FlowNet2 FlowNet2-s 0.4 GB 14 fps

FlowNet2-ss 0.6 GB 11 fps

FlowNet2-css-ft-sd 0.9 GB 8 fps

FlowNet2-CSS-ft-sd 1.6 GB 5 fps

FlowNet2-cssR 1.6 GB 6 fps

FlowNet2 3.0 GB 3 fps

2.5 Launch Example
Note that the aluf_vision_pipeline package launchfile combines steps 4, 6, 7, 9, and
10.

0.) Compile software
catkin_make install

1.) Plug in camera

2.) Set permissions of camera device
sudo chmod o+rwX /dev/ttyACM0

3.) Launch camera driver
roslaunch uvc_ros_driver uvc_ros_driver.launch
This provides the following topics:
/uvc_camera/cam_1/image_raw
/uvc_camera/cam_0/image_raw
#

4.) Launch the rectifier:
roslaunch aluf_ethzcam_rectifier rectify-alufcam.launch
This maps the following topics:
/uvc_camera/cam_1/image_raw -> /uvc_cam1_rect_mono
/uvc_cam1_rect_mono/camera_info
/uvc_camera/cam_0/image_raw -> /uvc_cam0_rect_mono
/uvc_cam0_rect_mono/camera_info

5.) Launch image viewers
rosrun image_view image_view image:=/uvc_cam1_rect_mono
rosrun image_view image_view image:=/uvc_cam0_rect_mono

Version 1.0; 2017–12–31 Page 9 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

6.) Launch DispNet
roslaunch aluf_dispnet dispnet.launch
This publishes the /dispnet topic

7.) Launch disparity visualization
roslaunch aluf_disparity_view dispview.launch
This subscribes to /dispnet and publishes /dispnet_vis

8.) Launch a viewer for disparity visualization
rosrun image_view image_view image:=/dispnet_vis

9.) Launch FlowNet
roslaunch aluf_flownet flownet.launch
This publishes the /flownet topic

10.) Launch flow visualization
roslaunch aluf_flow_view flowview.launch
This subscribes to /flownet and publishes /flownet_vis

11.) Launch a viewer for flow visualization
rosrun image_view image_view image:=/flownet_vis

References
[1] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A

large dataset to train convolutional networks for disparity, optical flow, and scene flow es-
timation,” in IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. [Online]. Available: http://lmb.informatik.uni-freiburg.
de/Publications/2016/MIFDB16.

[2] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. [Online]. Available: http://lmb.
informatik.uni-freiburg.de/Publications/2017/IMSKDB17.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings
of the 22nd ACM international conference on Multimedia, ACM, 2014, pp. 675–678.

[4] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-
sensor systems,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, IEEE, 2013, pp. 1280–1286.

Version 1.0; 2017–12–31 Page 10 of 12 c© TrimBot2020 Consortium, 2016

http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2017/IMSKDB17
http://lmb.informatik.uni-freiburg.de/Publications/2017/IMSKDB17

IST – 688007, – TrimBot2020 Deliverable 5.2

Large Displacement

FlowNetS
Image 1

Image 1

Image 1

Image 2

Image 2

Brightness
Error

Flow Flow

Flow

Flow
Magnitude

Flow
Magnitude

Image 1

Image 2

Warped

Brightness
Error

Brightness
Error

Brightness
Error

Flow

Flow

Image 1

Image 2

Warped

Large
Displacement Large Displacement

Fusion

FlowNetC FlowNetS

Small Displacement

FlowNet-SD

Image 1

Image 2

Flow

FlowNetS

FlowNetS
Image 1

Image 2

Flow

Brightness
Error

Flow

Image 1

Image 2

Warped

FlowNetS

FlowNetS
Image 1

Image 2 Brightness
Error

Flow Flow

Image 1

Image 2

Warped

Brightness
Error

Flow

Image 1

Image 2

Warped

FlowNetC FlowNetS

FlowNetS
Image 1

Image 1

Image 2 Brightness
Error

Flow Flow

Flow
Magnitude

Image 1

Image 2

Warped

Brightness
Error

Brightness
Error

Flow Flow

Image 1

Image 2

Warped

FlowNetC FlowNetS

FlowNet2-s

FlowNet2-ss

FlowNet2-css-ft-sd and FlowNet2-CSS-ft-sd

FlowNet2-cssR

FlowNet2

Figure 6: FlowNet2 architectures. Configurations of the FlowNet2 for the networks listed in
Section 2.3. Lowercase letter c/s designate that a network uses fewer channels per layer than
the corresponding uppercase (C/S) network.

Version 1.0; 2017–12–31 Page 11 of 12 c© TrimBot2020 Consortium, 2016

IST – 688007, – TrimBot2020 Deliverable 5.2

(a) Middlebury (b) Sintel

Figure 7: Color circles used for Middlebury and Sintel optical flow visualization. To apply
the visualization the optical flow vector is placed in the circle; a zero flow vector is black in
Middlebury but white in Sintel. In both styles, larger flows appear as more saturated colors.
The Sintel style is more printer-friendly while a Middlebury flow display is often easier for
humans to interpret.

Version 1.0; 2017–12–31 Page 12 of 12 c© TrimBot2020 Consortium, 2016

	Scene Flow
	Software Package
	ROS Interface
	DispNet
	FlowNet2
	Framerates And Resource Usage
	Launch Example

