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1 Introduction
Over the last decades, we have seen tremendous progress in the area of 3D reconstruction,
enabling us to reconstruct large scenes at a high level of detail in little time. However, the
resulting 3D representations only describe the scene at a geometric level. They cannot be used
directly for more advanced applications, such as a robot interacting with its environment, due
to a lack of semantic information. In addition, purely geometric approaches are prone to fail
in challenging environments, where appearance information alone is insufficient to reconstruct
complete 3D models from multiple views, for instance, in scenes with little texture or with
complex and fine-grained structures. At the same time, deep learning has led to a huge boost in
recognition performance, but most of this recognition is restricted to outputs in the image plane
or, in the best case, to 3D bounding boxes, which makes it hard for a robot to act based on these
outputs.

Integrating learned knowledge and semantics with 3D reconstruction is a promising avenue
towards a solution to both these problems. For example, the semantic 3D reconstruction tech-
niques proposed in recent years jointly optimize the 3D structure and semantic meaning of a
scene and semantic SLAM methods add semantic annotations to the estimated 3D structure.
Learning formulations of depth estimation shows the promises of integrating single-image cues
into multi-view reconstruction and, in principle, allows the integration of depth estimation and
recognition in a joint approach.

2 Workshop

2.1 Goals
Following the first edition of the workshop, the goal of our second workshop on 3D Recon-
struction meets Semantics (3DRMS) was to explore and discuss new ways for integrating
techniques for 3D reconstruction with recognition and learning.

Invited talks by renowned experts gave an overview of the current state of the art: Andrew
Davison (Professor at Imperial College London, Dyson Robotics Lab) was speaking about how
SLAM evolves into spatial AI systems, which allow devices to interact usefully with their
environment. Thomas Funkhouser (Professor at the Princeton University) explained how we
can help RGB-D cameras understand their 3D environment by means of semantic scene or
depth completion and extrapolation. Christian Häne (Google) presented his work on semantics
and learning for dense 3D reconstruction of objects done at UC Berkeley and ETH Zurich. All
of the speakers also engaged in an interesting panel discussion.

At the same time, we provided authors a platform to present novel approaches towards
answering questions such as: How can semantic information be used to improve the dense
matching process in 3D reconstruction techniques? How valuable is 3D shape information for
the extraction of semantic information?

2.2 Topics
Topics of interest for the workshop included, but were not limited to:

• Semantic 3D reconstruction and semantic SLAM
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• Learning for 3D vision

• Fusion of geometric and semantic maps

• Label transfer via 3D models

• Datasets for semantic reconstruction including synthetic dataset generation for learning

• 2D/3D scene understanding and object detection

• Joint object segmentation and depth layering

• Correspondence and label generation from semantic 3D models

• Robotics applications based on semantic reconstructions

• Semantically annotated models for augmented reality

2.3 Submissions
We received 21 submissions tackling those problems, of which 18 were regular papers and 3
extended abstracts (up to 6 pages). Thanks to 12 external reviewers each regular paper got at
least two reviews. Based on the recommendations from the reviewers, the papers were discussed
by the workshop organizers in a second meta-review round. As a result of this discussion
7 regular papers (39%) were accepted. Extended abstracts were not peer-reviewed to allow
authors future publications on these topics and 2 of them (66%) were selected based on their
fit to the workshop and the potential to lead to interesting discussions (thus creating valuable
feedback for the authors).

2.4 Program
Date: Sunday September, 9th 2018 (morning session)
Place: N1179, TU Munich
Program:

• 9:00 Introduction by the organisers [5min]

• 9:05 Invited Talk: Andrew Davison [30min]

• 9:35 Spotlight presentations of accepted papers and extended abstracts [40min]

– Jong-Chyi Su, Matheus Gadelha, Rui Wang, Subhransu Maji, A Deeper Look at 3D
Shape Classifiers

– Priyanka Mandikal, Navaneet K L, R Venkatesh Babu, 3D-PSRNet: Part Segmented
3D Point Cloud Reconstruction from a Single Image

– Ali Caglayan, Ahmet Burak Can, Exploiting Multi-Layer Features Using a CNN-
RNN Approach for RGB-D Object Recognition

– Denis Tananaev, Huizhong Zhou, Benjamin Ummenhofer, Thomas Brox, Tempo-
rally Consistent Depth Estimation in Videos with Recurrent Architectures

Version 1.0; 2018–11-28 Page 3 of 5 © TrimBot2020 Consortium, 2018



IST – 688007, – TrimBot2020 Deliverable D8.9

– Andrea Palazzi, Luca Bergamini, Simone Calderara, Rita Cucchiara, End-to-end
6-DoF Object Pose Estimation through Differentiable Rasterization

– Waleed Ali, Sherif Abdelkarim, Mahmoud Zidan, Mohamed Zahran, Ahmad El Sal-
lab, YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection
from LiDAR Point Cloud

– Lama Seoud, Jonathan Boisvert, Marc-Antoine Drouin, Michel Picard, Guy Godin,
Increasing the robustness of CNN-based human body segmentation in range images
by modeling sensor-specific artifacts

– Suhani Vora, Anelia Angelova, Soeren Pirk, Reza Majhourian, Future Semantic
Segmentation Leveraging 3D Information (extended abstract)

– Clara Fernandez Labrador, José Marı́a Fácil, Alejandro Perez Yus, Cedric Demon-
ceaux, Josechu Guerrero, PanoRoom: From the Sphere to the 3D Layout (extended
abstract)

• 10:15 Invited Talk: Thomas Funkhouser [30min]

• 10:45 Coffee Break & Poster presentations [45min]

• 11:30 Discussion of the challenge and results [10min]

• 11:40 Oral presentations by challenge winners [10min]

• 11:50 Invited Talk: Christian Häne [30min]

• 12:20 Panel discussion with invited speakers [20min]

• 12:40 Closing

2.5 Attendance
The workshop was well-attended, with participation of about 130 delegates in the lecture room.
The poster session was also widely attended, although it was held at the same time as coffee
breaks. In Figure 1, we show two photos of the audience in the lecture room.

Nine spotlight presentations were given by the authors, followed by a poster session. We
are glad the workshop attracted its audience, especially during the invited talks and the panel
discussion at the end of the program.
More pictures taken during the workshop and the poster sessions can be found at the url:
http://trimbot2020.webhosting.rug.nl/3drms-workshop-at-eccv-2018-in-munich-photogallery/

3 Challenge
Part of the workshop was a challenge on combining 3D and semantic information in complex
scenes. To this end, a challenging outdoor dataset was released, consisting of both synthetic
and real images of gardens. The data sets are available from the project website at the url:
https://gitlab.inf.ed.ac.uk/3DRMS/Challenge2018

Given a set of images and their known camera poses, the goal for the challenge participants
was to create a semantically annotated 3D model of the scene
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(a) (b)

Figure 1: Two photos of the audience at the workshop lecture room.

3.1 Report
The challenge report and discussion is available as a paper in the ECCV Workshop Proceedings,
and it is attached to the present document.
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Abstract. This paper discusses a reconstruction challenge held as a part
of the second 3D Reconstruction meets Semantics workshop (3DRMS).
The challenge goals and datasets are introduced, including both synthetic
and real data from outdoor scenes, here represented by gardens with a
variety of bushes, trees, other plants and objects. Both qualitative and
quantitative evaluation of the challenge participants’ submissions is given
in categories of geometric and semantic accuracy. Finally, comparison
of submitted results with baseline methods is given, showing a modest
performance increase in some of the categories.
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1 Introduction

Over the last decades, we have seen tremendous progress in the area of 3D re-
construction, enabling us to reconstruct large scenes at a high level of detail in
little time. However, the resulting 3D representations only describe the scene at
a geometric level. They cannot be used directly for more advanced applications,
such as a robot interacting with its environment, due to a lack of semantic infor-
mation. In addition, purely geometric approaches are prone to fail in challenging
environments, where appearance information alone is insufficient to reconstruct
complete 3D models from multiple views, for instance, in scenes with little tex-
ture or with complex and fine-grained structures.

At the same time, deep learning has led to a huge boost in recognition perfor-
mance, but most of this recognition is restricted to outputs in the image plane
or, in the best case, to 3D bounding boxes, which makes it hard for a robot
to act based on these outputs. Integrating learned knowledge and semantics
with 3D reconstruction is a promising avenue towards a solution to both these
problems. For example, the semantic 3D reconstruction techniques proposed in
recent years, e.g. [9], jointly optimize the 3D structure and semantic meaning of
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a scene and semantic SLAM methods add semantic annotations to the estimated
3D structure. Another recent step in this direction [5] shows that semantic and
geometric relationships can be learned end-to-end from data as variational pri-
ors. Learning formulations of depth estimation, such as in [6], show the promises
of integrating single-image cues into multi-view reconstruction and, in principle,
allow the integration of depth estimation and recognition in a joint approach.

The goal of the 3DRMS workshop was to explore and discuss new ways for
integrating techniques from 3D reconstruction with recognition and learning. In
order to support work on questions related to the integration of 3D reconstruc-
tion with semantics, the workshop featured a semantic reconstruction challenge1.

In this paper we will first present the challenge objectives and introduce
datasets available for training, testing and validation of considered semantic re-
construction methods. Next, received submissions will be described, performance
evaluation criteria defined and finally quantitative results will be compared and
discussed.

2 Reconstruction Challenge

The challenge dataset was rendered from a drive through a semantically-rich vir-
tual garden scene with many fine structures. Virtual models of the environment
allowed us to provide exact ground truth for the 3D structure and semantics
of the garden and rendered images from virtual multi-camera rig, enabling the
use of both stereo and motion stereo information. The challenge participants
submitted their result for benchmarking in one or more categories: the quality
of the 3D reconstructions, the quality of semantic segmentation, and the quality
of semantically annotated 3D models. Additionally, a dataset captured in a real
garden from moving robot was available for validation.

2.1 Objectives

Given a set of images and their known camera poses, the goal of the challenge
was to create a semantically annotated 3D model of the scene. To this end, it was
necessary to compute depth maps from the images and then fuse them together
(potentially while incorporating information from the semantics) into a single
3D model.

What we consider particularly challenging is the complex geometric structure
of objects in the outdoor scenes we ask participants to reconstruct in 3D. Unlike
scenes of man-made environments (indoor, urban, road-side) with certain degree
of regularity of seen surfaces, a typical outdoor scene will have trees and plants
with fine structures such as leaves, stems or branches, which are thin and noto-
riously hard to represent accurately. In real conditions those are also inherently
non-rigid objects, e.g. grass moving in wind, which requires robust matching
procedures to cope with small moving object parts. We hoped the participants

1 http://trimbot2020.webhosting.rug.nl/events/3drms/challenge
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would come up with representations or priors that will adapt to different objects’
geometry based on their semantic class to handle such difficulties.

3 Garden Dataset

Three groups of data were provided for the challenge, see Fig. 3 for sample
images.
Synthetic training sequences consist of 20k calibrated images with their
camera poses, ground truth semantic annotations, and a semantically annotated
3D point cloud of 4 different virtual gardens.
Synthetic testing sequence consists of 5k calibrated images with their camera
poses from 1 virtual garden.
Real-world validation sequence consists of 300 calibrated images with their
camera poses from 1 real garden.
Semantic labels of objects distinguished are the following, with color code in
brackets: Grass (light green), Ground (brown), Pavement (grey), Hedge (ochre),
Topiary (cyan), Rose (red), Obstacle (blue), Tree (dark green), Background
(black).

All data are available from the git repository https://gitlab.inf.ed.ac.

uk/3DRMS/Challenge2018, where also details on the file formats can be found.

3.1 Synthetic Garden Data

We have randomly generated 5 virtual gardens (square 12m×12m) and rendered
them using Blender, similar to Nature dataset [14]. The camera trajectories were
generated to simulate a robot moving through the garden, moving on smooth
trajectories, occasionally stopping and turning on spot, as shown in Fig. 1. At
each waypoint 10 views were rendered from a virtual camera rig, which has pen-
tagonal shape, with a stereo camera pair on each side as in Fig. 2. Fine-grained
details, such as grass and leaves, were generated on the fly during rendering.
Details on dataset generation can be found in [2].

3.2 Real Garden Data

The real dataset for the the 3DRMS challenge was collected in a test garden at
Wageningen University Research Campus, Netherlands, which was built specif-
ically for experimentation in robotic gardening. A validation sequence based on
test around garden scenario with 124 frames from the previous year dataset
was adopted for this year.

Calibrated Images. Image streams from four cameras (0,1,2,3) were provided.
Fig. 2 shows these are mounted in a pairwise setup, the pair 0-1 is oriented to
the front and the pair 2-3 to the right side of the robot vehicle. Resolution of the
images is 752x480 (WVGA), cameras 0 and 2 are color while cameras 1 and 3 are
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Fig. 1: Randomly generated trajectories for the test scene (unique color for each
sequence)

greyscale (but sharper). All images were undistorted with the intrinsic camera
parameters, calibration was performed with Kalibr toolbox [7]. The camera poses
were estimated with COLMAP [17] and manually aligned to the coordinate
system of the laser point cloud.

Semantic Image Annotations. Manual pixel-wise ground truth (GT) anno-
tations (Fig. 3) produced with semantic annotation tool [20] are provided for
frames from cameras 0 and 2.

Semantic Point Cloud. The geometry of the scene was acquired by Leica
ScanStation P15, which achieves accuracy of 3 mm at 40 m. Its native output
merged from 20 individual scans (Fig. 4) was sub-sampled with a spatial filter
to achieve a minimal distance between two points of 10 mm, which becomes the
effective accuracy of the GT. For some dynamic parts, like leaves and branches,
the accuracy can be further reduced due to movement by the wind, etc.

Semantic labels were assigned to the points with multiple 3D bounding boxes
drawn around individual components of the point cloud belonging to the garden
objects or terrain using the Rosemat2 annotation tool [20]. Ultimately the point
cloud was split into segments corresponding to train and test sequences as shown
in Fig. 5.

2 Rosbag Semantic Annotation Tool for Matlab. https://github.com/rtylecek/

rosemat
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Fig. 2: Pentagonal camera rig mounted on the robot (left). First four cameras
were included in the real challenge data (right, green).
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Color image (undistorted) Semantic annotation

Fig. 3: Synthetic and real images of a garden from front camera mounted on a
moving robot.
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Fig. 4: Point cloud of the real garden from laser scanner (height-colored).

a) synthetic training scenes (color and semantic)

b) synthetic testing scene c) real validation scene

Fig. 5: GT semantic point cloud of virtual and real gardens with color-coded
labels.
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4 Submitted Results

Three submission were received fort this challenge:

DTIS [3] (ONERA, Université Paris Saclay, France): In their pipeline, initial
SGM stereo results are fed to FuseNet [11], which jointly predicts a 2D semantic
segmentation map and refined depth. Those are fused using TSDF in a 3D
volumetric representation with colors and labels. Ultimately MC [15] extracts a
surface mesh with labels assigned by voting.

HAB [10] (Video Analytics Lab, Indian Institute of Science, Bangalore, India):
Their approach starts with ELAS stereo [8] producing a dense point cloud labeled
with 2D semantic segmentation from DeepLabV3 [4]. The resulting point cloud
is denoised with class-specific filters and similarly mesh reconstruction is using
PSR [13] for flat surface classes and ball-pivoting for fine structures.

LAPSI [12] (LaPSI, UFRGS, Brazil): Only the geometric mesh was generated,
in two variants: LAPSI360 using all 10 cameras and LAPSI4 using only 4 cam-
eras. We omit the latter variant from some comparisons as it was generally
performing just slightly worse than the former.

In addition to the three submitted results we have also compared to current
state-of-the-art methods in both reconstruction [17] and classification [1] tasks.

COLMAP [16] (3D Reconstruction baseline) A general-purpose Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and
command-line interface. It offers a wide range of features for reconstruction of
ordered and unordered image collections.

SegNet [1] (Semantic baseline) For comparison with the 2D state-of-the-art a
SegNet architecture [1] is adapted for the given garden semantics.

5 Evaluation

We have evaluated the quality of the 3D meshes based on the completeness of
the reconstruction, i.e., how much of the ground truth is covered, the accuracy
of the reconstruction, i.e., how accurately the 3D mesh models the scene, and
the semantic accuracy of the mesh, i.e., how close the semantics of the mesh are
to the ground truth. This section describes those metrics and how we measured
them.

5.1 3D Geometry Reconstruction: Accuracy & Completeness

We have followed the usual evaluation methodology described in [19]. In partic-
ular, accuracy is distance d (in m) such that 90% of the reconstruction is within



8 Tylecek, Radim et al.

DTIS [3] HAB [10]

LAPSI [12] GT

Fig. 6: Semantic and color meshes based on synthetic images submitted to the
challenge with GT point cloud for comparison.

DTIS [3] LAPSI [12] GT

Fig. 7: Semantic and color meshes based on real images submitted to the chal-
lenge with GT point cloud for comparison.
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d of the ground truth mesh and completeness is the percent of points in the GT
point cloud that are within 5 cm of the reconstruction.

The distances between the reconstruction and GT are calculated using a
point-to-mesh metric for completeness and vertex-to-point for accuracy. The
faces of submitted meshes were subdivided to have a same maximum edge length.
The difference between the evaluated results is shown in Fig. 8, which all use
the same color scale for accuracy or completeness. Cold colors indicate well
reconstructed segments while hot colors indicate hallucinated surface (accuracy)
or missing parts (completeness).

The evaluation was limited to the space delimited by the bounding box of
the test area plus 2 m margin. Following [18] we also plot cumulative histograms
of distances in Fig. 9.
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Accuracy Completeness

Fig. 8: Visual comparison of submitted geometry and test scene GT point cloud.
Distances [0-1m]: cold colors indicate well reconstructed segments, hot colors
indicate noisy surface (accuracy) or missing parts (completeness).
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Fig. 9: Quantitative comparison of geometry with cumulative histograms of dis-
tances between GT and submissions.
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5.2 Semantic Classification Accuracy

The accuracy of semantic labels assigned to vertices or faces of the 3D model
(Fig. 6 and Fig. 7) was evaluated by its projection to all test images with known
poses (denoted ’3D’ below). Some submissions also directly included image seg-
mentation results (denoted ’2D’), which were also compared.

Visual comparison of the results in a selected frame is given in Fig. 10. In the
error mask the red pixels indicate incorrectly classified pixels, grey were correct
and black were not evaluated. Quantitative results are presented by confusion
matrices for all images in the test set in Fig. 11, where semantic accuracy is the
percentage of correctly predicted pixels across all test images, and similarly in
Fig. 12 for real images.
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HAB-3D [10] DTIS-3D [3] DTIS-2D [3] SegNet (2D baseline)

G
T

Fig. 10: Comparison of predicted semantic maps for a sample synthetic frame
(above) and GT semantics with color image, overlay and depth map (below).
Error mask: red marks incorrect pixels, grey correct.
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Fig. 11: Evaluation of predicted semantic labels on test set. Confusion matrix:
dark on diagonal indicates good match of the prediction with GT labels. Seman-
tic accuracy: pixel-wise ratio of correct predictions over all test images.
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Fig. 12: Evaluation of predicted semantic labels on real set.
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5.3 Results and Discussion

The quantitative comparison in all performance categories is given in Table 1
for synthetic data and in Table 2 for real validation data.

The baseline Structure-from-Motion method COLMAP [17] was outperformed
by HAB submission by 3 cm in terms of accuracy on synthetic data, but at the
cost of lower completeness (Table 1). The COLMAP result could be potentially
improved by filtering out outliers seen in Fig. 8, still the class-specific filters used
in HAB would likely work for its advantage.

While DTIS submission was lacking good geometry, its joint depth and se-
mantic segmentation resulted in a slight boost of 1% in 2D semantic segmenta-
tion accuracy over the SegNet baseline [1], which did not have access to depths.
This however did not translate to 3D semantic accuracy, where the change of
representation to less accurate mesh resulted in 12% drop in performance. Fur-
ther inspection of the results shows that most object instances are correctly
classified, and the 10-20% error appears near object boundaries or contours.

The real dataset proved to be more challenging Table 2, where the deep
network employed by DTIS would apparently need more data for fine-tuning.
This probably allowed the classic MVS baseline to prevail in both accuracy and
completeness. Among the challenge participants, LAPSI was slightly better on
accuracy, but their mesh was otherwise very sparse as low completeness suggests,
probably resulting from overly conservative setting of the method.

In summary, best performers for synthetic data were HAB in 3D Geometry
category and DTIS in the semantic category. On real data DTIS also scored
better than the other submissions.

Method
3D Reconstruction Semantic

Accuracy Completeness Accuracy-2D Accuracy-3D

DTIS [3] 0.122 m 66.2 % 91.1 % 79.0 %

HAB [10] 0.069 m 74.0 % 79.0 %

LAPSI [12] 0.164 m 23.9 %

Baseline 0.097 m 86.4 % 90.2 %

Table 1: Comparison of submitted results on synthetic test set.

Method
3D Reconstruction Semantic

Accuracy Completeness Accuracy-2D

DTIS [3] 0.25 m 27.1 % 65.1 %

HAB [10]

LAPSI [12] 0.15 m 13.7 %

Baseline 0.035 m 35.8 % 82.9 %

Table 2: Comparison of submitted results on real validation set.
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6 Conclusion

The workshop challenge competitors have shown that in some cases the joint
semantic and 3D information reasoning can improve results. The performance
gain was however rather marginal, suggesting that further optimization and de-
sign changes are needed to fully unlock the potential that such approaches offer
and come up with methods giving overall balanced improvements. For this pur-
pose, we will continue to support new authors in evaluating their methods on
the garden dataset.
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